1/6x+2/3=1/4x=1/3

Simple and best practice solution for 1/6x+2/3=1/4x=1/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/6x+2/3=1/4x=1/3 equation:



1/6x+2/3=1/4x=1/3
We move all terms to the left:
1/6x+2/3-(1/4x)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/6x-(+1/4x)+2/3=0
We get rid of parentheses
1/6x-1/4x+2/3=0
We calculate fractions
192x^2/216x^2+36x/216x^2+(-54x)/216x^2=0
We multiply all the terms by the denominator
192x^2+36x+(-54x)=0
We get rid of parentheses
192x^2+36x-54x=0
We add all the numbers together, and all the variables
192x^2-18x=0
a = 192; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·192·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*192}=\frac{0}{384} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*192}=\frac{36}{384} =3/32 $

See similar equations:

| x(x−1)=0. | | 5x-1=-5x+1= | | 90(3x+2)x=1 | | x+.10x=6000 | | x+32+x-39=180 | | 1+3t=19 | | 1.6x+6.4=-4.8 | | -4x-6(4x)=-16 | | 4-4x=88 | | 56-8x=-16 | | 44-15x=90 | | 24+6x=60 | | 3x-8.7=4.5 | | 5(6x-9)=6x+99 | | -7x+21=63 | | 4m+2(m+1=9 | | 10x+24=A | | -9x-8=-80 | | (x+15)+40=180 | | 2(n+10)=5(n+-1) | | (x+15)+40+x=180 | | 180˚(n-2)=160˚/10 | | q=41=61 | | 5^(2x)=25^(3x+2) | | xx35=180 | | 2z-5z+z=10 | | 2z-5z=10 | | -x+7=-x-2 | | 33+x=-12 | | 180=(4x-20)+(2x+5)+(x+15) | | Y=-3x^2-2x-17 | | 1.5x+6=2x+1 |

Equations solver categories