1/5x2+2=3/5x2

Simple and best practice solution for 1/5x2+2=3/5x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x2+2=3/5x2 equation:



1/5x^2+2=3/5x^2
We move all terms to the left:
1/5x^2+2-(3/5x^2)=0
Domain of the equation: 5x^2!=0
x^2!=0/5
x^2!=√0
x!=0
x∈R
Domain of the equation: 5x^2)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
1/5x^2-3/5x^2+2=0
We multiply all the terms by the denominator
2*5x^2+1-3=0
We add all the numbers together, and all the variables
2*5x^2-2=0
Wy multiply elements
10x^2-2=0
a = 10; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·10·(-2)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*10}=\frac{0-4\sqrt{5}}{20} =-\frac{4\sqrt{5}}{20} =-\frac{\sqrt{5}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*10}=\frac{0+4\sqrt{5}}{20} =\frac{4\sqrt{5}}{20} =\frac{\sqrt{5}}{5} $

See similar equations:

| 5uu=3 | | 6x+2=5x-17 | | 5t-5=25 | | (4x+15)+(2x+27)=180 | | -9x+8=4x-42 | | 1.25+h=18.20 | | 39=3x+6 | | 5-4(x-9)=25 | | –b–84=2 | | 14x+x−6x=153. | | 9-6x=-8+5x | | -7.77-1.4y=3.7y-2.67 | | 121=4x-7(-4+5x) | | 150=6(1+4x) | | 0,5x=0,3-0,5x | | 5-4(x-3x3)=25 | | -8h-9=7-10h | | -3x+48x+24=-246 | | -120=6(4x+8) | | 81=6(8-x)+3 | | b-5-3b=4(6b-4)-3(6-b) | | 100=x+7×9 | | 25/8=x/2 | | -19.8=3.6y | | 23+11c=4c-7 | | -329=7(1-8x) | | 4(d-3)-5=-3 | | 89=5-6(x-8) | | -12=24+2b | | k/6-38=-29 | | 3x+x+x+x-3-2=7 | | 3/8=h/16 |

Equations solver categories