1/5x-20+1=-8/x-4

Simple and best practice solution for 1/5x-20+1=-8/x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x-20+1=-8/x-4 equation:



1/5x-20+1=-8/x-4
We move all terms to the left:
1/5x-20+1-(-8/x-4)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: x-4)!=0
x∈R
We add all the numbers together, and all the variables
1/5x-(-8/x-4)-19=0
We get rid of parentheses
1/5x+8/x+4-19=0
We calculate fractions
x/5x^2+40x/5x^2+4-19=0
We add all the numbers together, and all the variables
x/5x^2+40x/5x^2-15=0
We multiply all the terms by the denominator
x+40x-15*5x^2=0
We add all the numbers together, and all the variables
41x-15*5x^2=0
Wy multiply elements
-75x^2+41x=0
a = -75; b = 41; c = 0;
Δ = b2-4ac
Δ = 412-4·(-75)·0
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1681}=41$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-41}{2*-75}=\frac{-82}{-150} =41/75 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+41}{2*-75}=\frac{0}{-150} =0 $

See similar equations:

| 3x+3x+3x=0 | | 4-(2x+5)=1/2(-4x-2) | | X2+17x+1=0 | | 1/2x+4=2x-5 | | (2x)3=4 | | (x+2)(x+1)=(x+4)(x+5) | | 3x–(x–3)=6+2x–5x | | 5(x-1)=5x+2 | | (5x+6)(7x+8)=0 | | x/7=7/(x+7) | | 5(x-4)=-x+8 | | x+1/2-3x=3 | | 3x+12+2=2+5x-20 | | 15+(x/2)=23 | | 2b-7/3=8 | | 5y-2=7y+9 | | 4q/37=15 | | 6.8+9.3=-9.4+3.4(2-5x) | | y=7/2+4/2 | | (3÷4x)=(1÷2x)+(1÷3) | | (x+3)(7x+1)=0 | | 12-4x=-120 | | 10-4(x-5)=5 | | 27x-42=4(5x-9)+7x-6 | | 3b^2=30 | | 6m-4-3m=-3m+2 | | 6m-4-3m=-3m+1 | | 3x2+3x-126=0 | | 6(x-3)/4=3(x+6)/11 | | 3^(p+1)=0.7 | | 3^p+1=0.7 | | 3^p-1=0.7 |

Equations solver categories