1/5j+1/3j=2/9

Simple and best practice solution for 1/5j+1/3j=2/9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5j+1/3j=2/9 equation:



1/5j+1/3j=2/9
We move all terms to the left:
1/5j+1/3j-(2/9)=0
Domain of the equation: 5j!=0
j!=0/5
j!=0
j∈R
Domain of the equation: 3j!=0
j!=0/3
j!=0
j∈R
We add all the numbers together, and all the variables
1/5j+1/3j-(+2/9)=0
We get rid of parentheses
1/5j+1/3j-2/9=0
We calculate fractions
(-90j^2)/1215j^2+243j/1215j^2+405j/1215j^2=0
We multiply all the terms by the denominator
(-90j^2)+243j+405j=0
We add all the numbers together, and all the variables
(-90j^2)+648j=0
We get rid of parentheses
-90j^2+648j=0
a = -90; b = 648; c = 0;
Δ = b2-4ac
Δ = 6482-4·(-90)·0
Δ = 419904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{419904}=648$
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(648)-648}{2*-90}=\frac{-1296}{-180} =7+1/5 $
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(648)+648}{2*-90}=\frac{0}{-180} =0 $

See similar equations:

| a-6=3a= | | 6y+14=4y+6 | | x-5x=16x+4-x | | 136/17=x/14 | | -2.4r+16.1=24.5 | | -9d+31=2(2d-3)-80 | | 3/5+1/4=m-1/4 | | 2(5/7x−1)=5/7x. | | 2(57x−1)=57x. | | 9x+-2=4x+8 | | 2x+2=5x-20 | | 14/17=x/136 | | 141.7+x+20=180 | | 4e-2+e=33 | | X-10-6x=15-16 | | 16x2=−24x−9 | | 12x−13x−12x−13x+1=0 | | 3n+75=50=2n | | (w-1)^2=2w^2-10w+13 | | 11+m=+1/4m-2m | | 5(i+1)=20 | | 340=2/3*2l | | 4(-x-2)(-x-2)=16 | | 3(x-14)+1=-14x+5 | | 2,2/x=0,04 | | x*x+x=0,957 | | 40+34+45+a=180 | | 28x+20=0 | | X2+4x+5=x2-x+55 | | 50+55+x=180 | | 2.7y+8=5.9y-7 | | b=55b-35 |

Equations solver categories