1/4x2+19=300

Simple and best practice solution for 1/4x2+19=300 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x2+19=300 equation:



1/4x^2+19=300
We move all terms to the left:
1/4x^2+19-(300)=0
Domain of the equation: 4x^2!=0
x^2!=0/4
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
1/4x^2-281=0
We multiply all the terms by the denominator
-281*4x^2+1=0
Wy multiply elements
-1124x^2+1=0
a = -1124; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-1124)·1
Δ = 4496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4496}=\sqrt{16*281}=\sqrt{16}*\sqrt{281}=4\sqrt{281}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{281}}{2*-1124}=\frac{0-4\sqrt{281}}{-2248} =-\frac{4\sqrt{281}}{-2248} =-\frac{\sqrt{281}}{-562} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{281}}{2*-1124}=\frac{0+4\sqrt{281}}{-2248} =\frac{4\sqrt{281}}{-2248} =\frac{\sqrt{281}}{-562} $

See similar equations:

| 8y-5y/7y+1=5/4 | | 3x-6+x=x-3 | | x2/3=110 | | 5(a+7)=4(a+5) | | 0,5+2x=8,3 | | 5x3-55=140 | | (-8+k)^3=-1 | | 3(4x+5)=-2(6x+4) | | 2x3-6=82 | | (e+5)X2=18 | | 12x*3-4x*2=0 | | 6p+1+1/2=7p-3/3 | | 5x-11=10=2x | | 6p+1/2+1=7p-3/3 | | |-2x|-11=-7 | | 6x2-43.5=250.5 | | a×3+4=19 | | 7x−7=28 | | x3/10+28=128 | | (7/2)^5x-5×(2/7)^x=343/8 | | 12x–19=8x+5 | | x5+3=-29 | | 5y-12=3y-8 | | 5x+27=12x–29 | | 4x−3=37 | | 60=q÷19 | | 8t-1=2t+17 | | p-7.8=8 | | 4x−9=3 | | 12y-5=7y+25 | | 2(4i+3)+3(2i-1)=31 | | 12y-5=7y=25 |

Equations solver categories