1/4x-3=1/5x+1

Simple and best practice solution for 1/4x-3=1/5x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x-3=1/5x+1 equation:



1/4x-3=1/5x+1
We move all terms to the left:
1/4x-3-(1/5x+1)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 5x+1)!=0
x∈R
We get rid of parentheses
1/4x-1/5x-1-3=0
We calculate fractions
5x/20x^2+(-4x)/20x^2-1-3=0
We add all the numbers together, and all the variables
5x/20x^2+(-4x)/20x^2-4=0
We multiply all the terms by the denominator
5x+(-4x)-4*20x^2=0
Wy multiply elements
-80x^2+5x+(-4x)=0
We get rid of parentheses
-80x^2+5x-4x=0
We add all the numbers together, and all the variables
-80x^2+x=0
a = -80; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-80)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-80}=\frac{-2}{-160} =1/80 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-80}=\frac{0}{-160} =0 $

See similar equations:

| -8x+19=5x-7 | | 3+3f=18 | | 13x+56−56=11−56 | | 9x-41=-6x+34 | | 4x+5=15x-17 | | 13x=16−56 | | -4x-19=4x+5 | | -7x-44=-2 | | 39x+10=180 | | 4x-x^2=2+x | | -9x-97=8x+73 | | -8x-6=5x+20 | | -24=1/2(2x-4)+8 | | -9=-2(x+2)=11 | | 6x-20=22. | | 6k=-3k-27 | | -15c+-10c=100 | | 5n+7=9n+3 | | x²=12x-20 | | 7x7=567 | | 2/5^3x-1=25/4 | | X2+X2+6x+9=225 | | 3x+6x+7=0 | | 12.5/5=x/120= | | )k/5=7/1 | | 1/8p+1=1/6p-1 | | 3x-32=-3x+28 | | w-8=2w | | 3x+6=10-9x | | 21/3=p+6 | | 2x/3+42=42 | | 3(x+2)=6x-7 |

Equations solver categories