1/4x-2=1/8x+10

Simple and best practice solution for 1/4x-2=1/8x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x-2=1/8x+10 equation:



1/4x-2=1/8x+10
We move all terms to the left:
1/4x-2-(1/8x+10)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 8x+10)!=0
x∈R
We get rid of parentheses
1/4x-1/8x-10-2=0
We calculate fractions
8x/32x^2+(-4x)/32x^2-10-2=0
We add all the numbers together, and all the variables
8x/32x^2+(-4x)/32x^2-12=0
We multiply all the terms by the denominator
8x+(-4x)-12*32x^2=0
Wy multiply elements
-384x^2+8x+(-4x)=0
We get rid of parentheses
-384x^2+8x-4x=0
We add all the numbers together, and all the variables
-384x^2+4x=0
a = -384; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-384)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-384}=\frac{-8}{-768} =1/96 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-384}=\frac{0}{-768} =0 $

See similar equations:

| 3(t+3)=18 | | -12x-12=-2 | | 1-16s-14=3-14s | | x/4+x/10=-4 | | e+3/8=-11 | | 10x^-3x-2=0 | | x(x+9)=30 | | 4n+8=2n-24 | | 5x-8=x/4 | | -2/3x=9=4/3x-3 | | 3÷4-x=5 | | 10x+8=9(x-10) | | 180+30x=9 | | 13m-2=7m+46 | | (3x-4)+(6x+6)+(x+20)=180 | | x+12=16+(x-2) | | (4x+3)+(8x-4)=83 | | (565+65)-30w=w | | 22=2(3n-4) | | -6q=554 | | 8x+2-(x+1)=3x+10+4x | | 63-9x2=5x-6 | | 3x-4+6x+6+x+20=180 | | 3=33+3(x^2) | | 17+6r+9r=6r−19 | | 6+3k=-18 | | 180=50+70+x | | -11=5/2x+15 | | (6x-3)=(8x+5) | | u^2-20u-64=0 | | 7x+8+2x-1=124 | | 10x^2+10x+1=21 |

Equations solver categories