If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+9)=30
We move all terms to the left:
x(x+9)-(30)=0
We multiply parentheses
x^2+9x-30=0
a = 1; b = 9; c = -30;
Δ = b2-4ac
Δ = 92-4·1·(-30)
Δ = 201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{201}}{2*1}=\frac{-9-\sqrt{201}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{201}}{2*1}=\frac{-9+\sqrt{201}}{2} $
| 4n+8=2n-24 | | 5x-8=x/4 | | -2/3x=9=4/3x-3 | | 3÷4-x=5 | | 10x+8=9(x-10) | | 180+30x=9 | | 13m-2=7m+46 | | (3x-4)+(6x+6)+(x+20)=180 | | x+12=16+(x-2) | | (4x+3)+(8x-4)=83 | | (565+65)-30w=w | | 22=2(3n-4) | | -6q=554 | | 8x+2-(x+1)=3x+10+4x | | 63-9x2=5x-6 | | 3x-4+6x+6+x+20=180 | | 3=33+3(x^2) | | 17+6r+9r=6r−19 | | 6+3k=-18 | | 180=50+70+x | | -11=5/2x+15 | | (6x-3)=(8x+5) | | u^2-20u-64=0 | | 7x+8+2x-1=124 | | 10x^2+10x+1=21 | | -2(3x-4+12=-16 | | -215=-5w | | 7v=24-20 | | -22/8=8z/8 | | 180=54+55+x+74 | | 180x=10+2(90-x) | | 18=0.55x |