1/4n+3/28n+11/4=3/2

Simple and best practice solution for 1/4n+3/28n+11/4=3/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4n+3/28n+11/4=3/2 equation:



1/4n+3/28n+11/4=3/2
We move all terms to the left:
1/4n+3/28n+11/4-(3/2)=0
Domain of the equation: 4n!=0
n!=0/4
n!=0
n∈R
Domain of the equation: 28n!=0
n!=0/28
n!=0
n∈R
We add all the numbers together, and all the variables
1/4n+3/28n+11/4-(+3/2)=0
We get rid of parentheses
1/4n+3/28n+11/4-3/2=0
We calculate fractions
(-2688n^2)/3584n^2+112n/3584n^2+384n/3584n^2+1232n/3584n^2=0
We multiply all the terms by the denominator
(-2688n^2)+112n+384n+1232n=0
We add all the numbers together, and all the variables
(-2688n^2)+1728n=0
We get rid of parentheses
-2688n^2+1728n=0
a = -2688; b = 1728; c = 0;
Δ = b2-4ac
Δ = 17282-4·(-2688)·0
Δ = 2985984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2985984}=1728$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1728)-1728}{2*-2688}=\frac{-3456}{-5376} =9/14 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1728)+1728}{2*-2688}=\frac{0}{-5376} =0 $

See similar equations:

| 3.4(2x+5=-0.2(2x+5) | | 6y-9y+2y-4=-8 | | 3/11=y/6 | | 2x=64x= | | 3x=5+7^2 | | 14x+14=3(7x-7) | | 80=26w+44w | | 17.33=3g+3.59 | | -2(3n-1)-n=-5(n-4) | | 2x+6=-3x+31 | | 3+9=3x+3 | | 9+15=-4(5x-6) | | X-4y=39 | | 4x-17+3x=11 | | 4x=5-2x+31 | | 2x-1/4-4x-3/9=-1/12 | | -6x+5(2x-19)=-75 | | -6(5x+1)=96 | | -3=3c−9 | | y+3/4=1/8 | | |3-8x|-10=11 | | 4+-4t=-12 | | 3(w-5)-8=-5(-5w+3)-4w | | 2=-6+2w | | 3(-6+4n)-2n=-6(7n+3) | | 250=105-u | | -1/2-4/3y=4/5 | | 3p−-6=18 | | -2-4x+4=7-2x+8-11x | | j/2+1=3 | | 40=4(6+11n)+4(-8+n) | | 5(y+4)+2=52 |

Equations solver categories