If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x-5+171=x.
We move all terms to the left:
1/3x-5+171-(x.)=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
1/3x-(+x.)-5+171=0
We add all the numbers together, and all the variables
1/3x-(+x.)+166=0
We get rid of parentheses
1/3x-x.+166=0
We multiply all the terms by the denominator
-(x.)*3x+166*3x+1=0
We add all the numbers together, and all the variables
-(+x.)*3x+166*3x+1=0
We multiply parentheses
-3x^2+166*3x+1=0
Wy multiply elements
-3x^2+498x+1=0
a = -3; b = 498; c = +1;
Δ = b2-4ac
Δ = 4982-4·(-3)·1
Δ = 248016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{248016}=\sqrt{16*15501}=\sqrt{16}*\sqrt{15501}=4\sqrt{15501}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(498)-4\sqrt{15501}}{2*-3}=\frac{-498-4\sqrt{15501}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(498)+4\sqrt{15501}}{2*-3}=\frac{-498+4\sqrt{15501}}{-6} $
| -2(k+2)+-7=-5 | | 6+7f=20 | | x^2+5x-3x-15=20 | | 2b+33=7(1+4b) | | 1/2q+3/5=2/3q | | 2.4(y=5)=2.4 | | 7f+5=-7+f | | 14c−13c−1=6 | | 4/4.40=10/x | | x=-11/3 | | 6k+8=62 | | 6.4=3(d+8)-3.4 | | -7+4z=5 | | X=-11/3+x=1 | | 10=400^x/360 | | -1x+2=x | | c/12-3=7 | | 8/x=16/24 | | 9^x=3^x+1 | | –4u=5u−9u | | 175-g=109 | | 3x-15+4x-12+90+2x+6=180 | | 4K+2k=3 | | -4x+2(3x-8=10 | | 22+c=180 | | 2x-3+x+6=180 | | 5x+6+49+90=180 | | 75+14h=719 | | 0.875m-0.5=0.0625m+5 | | 44+c=180 | | 3^(y-8)=11 | | 14+9q=-4 |