1/3x-4/3=1/6x-1

Simple and best practice solution for 1/3x-4/3=1/6x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-4/3=1/6x-1 equation:



1/3x-4/3=1/6x-1
We move all terms to the left:
1/3x-4/3-(1/6x-1)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x-1)!=0
x∈R
We get rid of parentheses
1/3x-1/6x+1-4/3=0
We calculate fractions
6x/162x^2+(-27x)/162x^2+(-24x)/162x^2+1=0
We multiply all the terms by the denominator
6x+(-27x)+(-24x)+1*162x^2=0
Wy multiply elements
162x^2+6x+(-27x)+(-24x)=0
We get rid of parentheses
162x^2+6x-27x-24x=0
We add all the numbers together, and all the variables
162x^2-45x=0
a = 162; b = -45; c = 0;
Δ = b2-4ac
Δ = -452-4·162·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2025}=45$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-45}{2*162}=\frac{0}{324} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+45}{2*162}=\frac{90}{324} =5/18 $

See similar equations:

| 9m-4=-3m | | F(x)=-2(3x+4)+30 | | H(t)=-3t^2+13t+10 | | -16+7(2a-3)=23-2a | | 3x-1=x5 | | 3b-19+14b=13+13b | | 1/2=1/3+x | | -30+48=-9j | | 6j-2j-4=20 | | 3(x+2)-4x=12+2x | | 2|2y−6|+4=8 | | 4+x/6=11 | | 3x-12=-6x·+2x | | 2(h-3)=4(h+10) | | 2(k-10)+2=12 | | 2(x+3)-2=5(2x-1)-3 | | 6+4x-1=5x | | 9j=-20+-34 | | -3b-9-2b-6=11b+3 | | 4{n+3}=24 | | 4+x÷6=11 | | 9j=-20 | | 6y=38 | | -1(5m+3)+6m=-21 | | -7h+20h+14=-12 | | 3(a+1.5)=-2 | | 8-g*8-g=0 | | -5(0.8x-4)=(1.4-7) | | 0.2x+1÷7=0.4 | | 78/x=-29 | | 6y=3+15 | | 4-5x=2x+2x+25 |

Equations solver categories