1/3x-1/5x=7/30

Simple and best practice solution for 1/3x-1/5x=7/30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-1/5x=7/30 equation:



1/3x-1/5x=7/30
We move all terms to the left:
1/3x-1/5x-(7/30)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-1/5x-(+7/30)=0
We get rid of parentheses
1/3x-1/5x-7/30=0
We calculate fractions
(-525x^2)/1350x^2+450x/1350x^2+(-270x)/1350x^2=0
We multiply all the terms by the denominator
(-525x^2)+450x+(-270x)=0
We get rid of parentheses
-525x^2+450x-270x=0
We add all the numbers together, and all the variables
-525x^2+180x=0
a = -525; b = 180; c = 0;
Δ = b2-4ac
Δ = 1802-4·(-525)·0
Δ = 32400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{32400}=180$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(180)-180}{2*-525}=\frac{-360}{-1050} =12/35 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(180)+180}{2*-525}=\frac{0}{-1050} =0 $

See similar equations:

| 1/2x+3=3/4x-13 | | 3x-4=5x-2(x-7) | | (x)/(4)+10=20 | | 720x=288x+1080 | | 7y=69 | | 2(c-1)=8 | | x^2-22x^2+x+114=0 | | -9+6x=15x | | 1/4(r+1)=9 | | 4(2x+16)=10x-14 | | 17x=23-29x | | 9-5u=-36 | | -4+6x=15x | | 2y-60=5y | | 5(x+7=45 | | 33-6x=5x | | y-248=157 | | 6-x=8+3x | | x+4+x–3+2x=17 | | 2y+30=-8 | | 5(6+5j)=380 | | 4=b/6-5 | | 13+15=x4 | | x-205=285 | | 128=8(8+2b) | | -y+61=253 | | (e+4)6=54e= | | (e+4)6=54e+ | | 3x-15=2x-48 | | x/9=−7 | | 24+w=5w | | 3(x-5)=-17 |

Equations solver categories