1/3x-1/4x+1/12=3

Simple and best practice solution for 1/3x-1/4x+1/12=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x-1/4x+1/12=3 equation:



1/3x-1/4x+1/12=3
We move all terms to the left:
1/3x-1/4x+1/12-(3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
determiningTheFunctionDomain 1/3x-1/4x-3+1/12=0
We calculate fractions
48x^2/144x^2+48x/144x^2+(-36x)/144x^2-3=0
We multiply all the terms by the denominator
48x^2+48x+(-36x)-3*144x^2=0
Wy multiply elements
48x^2-432x^2+48x+(-36x)=0
We get rid of parentheses
48x^2-432x^2+48x-36x=0
We add all the numbers together, and all the variables
-384x^2+12x=0
a = -384; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-384)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-384}=\frac{-24}{-768} =1/32 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-384}=\frac{0}{-768} =0 $

See similar equations:

| 2(4x+4)-2x=3(3x-5)+2x | | 3t+9t=84 | | 10x-24=-5x+6 | | 12a+10=34 | | -4(-5h-4)=2 | | 2x-5(x-3)=-4+2x-1 | | -4x+11+5x=7+x+4 | | -4/3z=-16 | | 0.21x=41 | | 35=5/2y | | 4x^2+5x=20 | | 5(6x-3)+3(10-3x)-5(4x+5)=-15 | | Y/4+y/3=3/5 | | 5(2z-1)-4(z+1)=2(z+1) | | 3(2x-1)-+2(3x+4)=11x | | 2/11x+1/4=1/3-9/11x+1/3 | | 63150+(h)+.85(h)=213000 | | 1+9(x-3)=10-6(x-4) | | 1/8(7t-7)=t+7/16 | | (3x+1)(7x-2)=5x+1 | | -12=2(4-3x)+2x | | 4/9p=3/8 | | 5/6a=3/4 | | 4x+1+2x-1=90 | | 3.2x^2-4.4x-1.5=0 | | 4x-5=2x-25 | | 4z÷-12=-8 | | x/2+x/4=49 | | -3(2x+1)+4x=5 | | 3x+6=37x+7 | | 3x+6=37x+7x | | -2(x-4)=-2x+11 |

Equations solver categories