1/3x+40+x-20+x-10=360

Simple and best practice solution for 1/3x+40+x-20+x-10=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+40+x-20+x-10=360 equation:



1/3x+40+x-20+x-10=360
We move all terms to the left:
1/3x+40+x-20+x-10-(360)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
2x+1/3x-350=0
We multiply all the terms by the denominator
2x*3x-350*3x+1=0
Wy multiply elements
6x^2-1050x+1=0
a = 6; b = -1050; c = +1;
Δ = b2-4ac
Δ = -10502-4·6·1
Δ = 1102476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1102476}=\sqrt{4*275619}=\sqrt{4}*\sqrt{275619}=2\sqrt{275619}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1050)-2\sqrt{275619}}{2*6}=\frac{1050-2\sqrt{275619}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1050)+2\sqrt{275619}}{2*6}=\frac{1050+2\sqrt{275619}}{12} $

See similar equations:

| -4=k/2-7 | | 250+19x=195+24x | | x/6+10=20 | | 9=3–4x+6x | | 10+4x=5(2x) | | 5d^2-3d^2+d=0 | | (10x+22)(7x+34)=90 | | 14+3x=-4x | | x+24+2=-17-24 | | (4x-3)+(x+2)=4 | | F(x)=275+0.03x | | 4x-10=-4x+2214 | | 4v-14+3v=21 | | -4+m/5=-6 | | -12-3y=5 | | 5/8=x+3/4 | | 4+(x+5)=4x+5 | | 0.8*x=33.6 | | -10=(-8+b)/2 | | 6(n+13)=5 | | 2x-22+90=180 | | ⅛(5y64)=¼(20+2y) | | 2x+1=132 | | 2x+28+4x+25=180 | | (2x-3)+(4x-4)=5 | | x+9-3x=6x-2 | | k-6/4=1 | | 4-3x+2=+2x-5 | | -136=-8(9+x) | | 4-3x+2=+2-5 | | 6(x-4)=8×(+2) | | 5(7x+5)3=305 |

Equations solver categories