1/3x+12=19-1/4x

Simple and best practice solution for 1/3x+12=19-1/4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+12=19-1/4x equation:



1/3x+12=19-1/4x
We move all terms to the left:
1/3x+12-(19-1/4x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-(-1/4x+19)+12=0
We get rid of parentheses
1/3x+1/4x-19+12=0
We calculate fractions
4x/12x^2+3x/12x^2-19+12=0
We add all the numbers together, and all the variables
4x/12x^2+3x/12x^2-7=0
We multiply all the terms by the denominator
4x+3x-7*12x^2=0
We add all the numbers together, and all the variables
7x-7*12x^2=0
Wy multiply elements
-84x^2+7x=0
a = -84; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·(-84)·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*-84}=\frac{-14}{-168} =1/12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*-84}=\frac{0}{-168} =0 $

See similar equations:

| 5(7-d)=2d+14 | | 5b-13.69-11.6b=-7.9b+18.21 | | -11=-3r+2r | | 3x-4=3-4 | | 25x+5=189 | | 9x-4=7-3x | | 18+6y-y2=0 | | -9p-4+15p=4p+6 | | x*5x=21612x= | | 9x –2(x + 5) = 5( x +6) | | 6+11f-16f=12-11f | | X-5+3x=60 | | 3x+2x-19=23 | | x*5x=216 | | 3(x-2)+4(x+5)=4 | | 16x+28=180 | | 3(n-4)=5(n+4)-2 | | 6+x-x=72-x | | 3x-(2x+4)=7 | | 5^k=52 | | 2x-14-4x=2(x+7) | | 3y+9=3y+21 | | (13x+45)°=(12x-40)° | | -(-7x+1)=8 | | -16-8h-4h=-8h+20 | | 2+17k=5k+13k+16 | | (13x+45)°+(12x-40)°=90° | | 18x=14x+24 | | 12(y=5)=13y=58 | | 2(c+8)=-8+4c | | -5-4s=6-6s+11 | | 16t^2-50t-7=0 |

Equations solver categories