1/3x+(2x+8)+x=205

Simple and best practice solution for 1/3x+(2x+8)+x=205 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+(2x+8)+x=205 equation:



1/3x+(2x+8)+x=205
We move all terms to the left:
1/3x+(2x+8)+x-(205)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
x+1/3x+(2x+8)-205=0
We get rid of parentheses
x+1/3x+2x+8-205=0
We multiply all the terms by the denominator
x*3x+2x*3x+8*3x-205*3x+1=0
Wy multiply elements
3x^2+6x^2+24x-615x+1=0
We add all the numbers together, and all the variables
9x^2-591x+1=0
a = 9; b = -591; c = +1;
Δ = b2-4ac
Δ = -5912-4·9·1
Δ = 349245
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{349245}=\sqrt{9*38805}=\sqrt{9}*\sqrt{38805}=3\sqrt{38805}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-591)-3\sqrt{38805}}{2*9}=\frac{591-3\sqrt{38805}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-591)+3\sqrt{38805}}{2*9}=\frac{591+3\sqrt{38805}}{18} $

See similar equations:

| x²+8x=-16 | | 5x-6(-2x-6)=-49 | | 4/3=-8/3v-1/9 | | (x+3)/4=10 | | 35-4x=2x-31 | | 1-9=-6x+5 | | 1+7=6x-3 | | 7/x+12=19 | | 3x+4x+12=6x+15 | | 1/4x-8/4=0 | | 8x+4+2x=22+8x | | -5(p+8)=-34-6p | | 8x+4+2x=22 | | X+6+3x=-12+x | | 10-5/8n=6+1/6n | | 2w+2/396w-12)=4w | | 6x/12-6=24 | | 32^5x+2=16^5x | | 36^2x=216^x-1 | | -3(5+3v)=-5v+13 | | 4y-y=56 | | x^2-x=819823 | | 1+2x=4+6x-7 | | -8p+5(1+7p)=-3p-25 | | x+44=96 | | 2x;-5=35 | | {x}{2}-4=2 | | 4.77=9/10x | | 0.7x-0.2=7.5 | | -5(p+8)=-33-6p | | 2.25-x=x+5.5 | | y=8(6) |

Equations solver categories