10-5/8n=6+1/6n

Simple and best practice solution for 10-5/8n=6+1/6n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10-5/8n=6+1/6n equation:



10-5/8n=6+1/6n
We move all terms to the left:
10-5/8n-(6+1/6n)=0
Domain of the equation: 8n!=0
n!=0/8
n!=0
n∈R
Domain of the equation: 6n)!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
-5/8n-(1/6n+6)+10=0
We get rid of parentheses
-5/8n-1/6n-6+10=0
We calculate fractions
(-30n)/48n^2+(-8n)/48n^2-6+10=0
We add all the numbers together, and all the variables
(-30n)/48n^2+(-8n)/48n^2+4=0
We multiply all the terms by the denominator
(-30n)+(-8n)+4*48n^2=0
Wy multiply elements
192n^2+(-30n)+(-8n)=0
We get rid of parentheses
192n^2-30n-8n=0
We add all the numbers together, and all the variables
192n^2-38n=0
a = 192; b = -38; c = 0;
Δ = b2-4ac
Δ = -382-4·192·0
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1444}=38$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-38}{2*192}=\frac{0}{384} =0 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+38}{2*192}=\frac{76}{384} =19/96 $

See similar equations:

| 2w+2/396w-12)=4w | | 6x/12-6=24 | | 32^5x+2=16^5x | | 36^2x=216^x-1 | | -3(5+3v)=-5v+13 | | 4y-y=56 | | x^2-x=819823 | | 1+2x=4+6x-7 | | -8p+5(1+7p)=-3p-25 | | x+44=96 | | 2x;-5=35 | | {x}{2}-4=2 | | 4.77=9/10x | | 0.7x-0.2=7.5 | | -5(p+8)=-33-6p | | 2.25-x=x+5.5 | | y=8(6) | | y=8(60 | | 5x+-1=2x+13 | | 9(x-4)=-3(-24) | | 5x+(x+3)=7+2x | | 9(x-4)=-3(-24 | | 7(7-2a)=27-3a | | -4n=-(n+3) | | x/64=37 | | r/2+6=14 | | -4a6(2a-4)=-88 | | 7(7x+6)=-40+8x | | 3x+27=81.83 | | (x+77)/(2)=84 | | X+(.055x)=20 | | -10+6n=4(n-4) |

Equations solver categories