If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3k+80=k+120
We move all terms to the left:
1/3k+80-(k+120)=0
Domain of the equation: 3k!=0We get rid of parentheses
k!=0/3
k!=0
k∈R
1/3k-k-120+80=0
We multiply all the terms by the denominator
-k*3k-120*3k+80*3k+1=0
Wy multiply elements
-3k^2-360k+240k+1=0
We add all the numbers together, and all the variables
-3k^2-120k+1=0
a = -3; b = -120; c = +1;
Δ = b2-4ac
Δ = -1202-4·(-3)·1
Δ = 14412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14412}=\sqrt{4*3603}=\sqrt{4}*\sqrt{3603}=2\sqrt{3603}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-2\sqrt{3603}}{2*-3}=\frac{120-2\sqrt{3603}}{-6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+2\sqrt{3603}}{2*-3}=\frac{120+2\sqrt{3603}}{-6} $
| 3h²–147=0 | | 14y=13y+17 | | -24-5n=-6+(7n+4) | | f+5/4=4 | | 3(k-9)=3 | | -6r=-16-5r | | 2(88-9x)=7x-49 | | -9=3(s+8) | | 3x(10^x)+10^x=0 | | -15c=-18-14c | | 3x(10^x)+10x=0 | | 7.5=5×y | | 10+32.50x=15+25x | | 2(b+2)-5=5 | | 5z-22=82 | | 12x-7-3x=5x+2(x+1) | | (2x-17)+63=180 | | 4=4(p-16) | | 6m-m=(5/6)(6m-10) | | 59+(x-3)=180 | | 4y-10+y+40=7y+30-5y | | (x+1)^2+12=-6 | | -2x+9=-35 | | 10+3(x+1)=1 | | (2w+5)(w8-8)=0 | | 8x=-6-9x | | 25(x^2+160x+120)=0 | | (x-17)+63=180 | | 18z-(8z-7)=67 | | 3.1×t=27.9 | | 10=3/8x-17 | | -8=-2(w-6)+-2 |