1/3k+80=1/2k+20

Simple and best practice solution for 1/3k+80=1/2k+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3k+80=1/2k+20 equation:



1/3k+80=1/2k+20
We move all terms to the left:
1/3k+80-(1/2k+20)=0
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
Domain of the equation: 2k+20)!=0
k∈R
We get rid of parentheses
1/3k-1/2k-20+80=0
We calculate fractions
2k/6k^2+(-3k)/6k^2-20+80=0
We add all the numbers together, and all the variables
2k/6k^2+(-3k)/6k^2+60=0
We multiply all the terms by the denominator
2k+(-3k)+60*6k^2=0
Wy multiply elements
360k^2+2k+(-3k)=0
We get rid of parentheses
360k^2+2k-3k=0
We add all the numbers together, and all the variables
360k^2-1k=0
a = 360; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·360·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*360}=\frac{0}{720} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*360}=\frac{2}{720} =1/360 $

See similar equations:

| 5x-3+x=3(2x-2)+3 | | (2x-2)=(×+5) | | x-47=-120 | | g^2-12g-64=0 | | -16+x=-8(5x+2) | | 1/x-3-1/x+3=6/x^2-9 | | 1/3x-4(2/3x-3)=2/3-6 | | 1/2x+12+1/4x=27 | | 3n-9(1)=24 | | 5-6p=17 | | -5(3-4x)=-6+20x-8 | | 11-3n+2=2 | | 21=7/8v | | 3.3+10m=7.54 | | (2x-2)°=(×+5)° | | 3n-9(-1)=24 | | 0=16x^2+177x-5 | | 3a+12=2a+29 | | 0.40a+0.30=0.60=8.00 | | (x+1)/2=5 | | 4x-20=27 | | |x÷2-3|=1 | | 14/3x-4/5=7/15x | | 160+4f=150 | | 5/9n=1/2 | | 11x+40=36x | | 12x-8(x+5)=4 | | 9-4x+4=2x+1 | | 6+3/4x=1/2-4 | | 11a+55-26a=205 | | 17=3+6x+2 | | x+6=15-3x |

Equations solver categories