If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3k+4-2k=-9k
We move all terms to the left:
1/3k+4-2k-(-9k)=0
Domain of the equation: 3k!=0We add all the numbers together, and all the variables
k!=0/3
k!=0
k∈R
-2k+1/3k-(-9k)+4=0
We get rid of parentheses
-2k+1/3k+9k+4=0
We multiply all the terms by the denominator
-2k*3k+9k*3k+4*3k+1=0
Wy multiply elements
-6k^2+27k^2+12k+1=0
We add all the numbers together, and all the variables
21k^2+12k+1=0
a = 21; b = 12; c = +1;
Δ = b2-4ac
Δ = 122-4·21·1
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{15}}{2*21}=\frac{-12-2\sqrt{15}}{42} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{15}}{2*21}=\frac{-12+2\sqrt{15}}{42} $
| 1/3(x–12)=2/3x–6 | | 9x^2-16x-7=2x+9 | | 180=54+(10-2x)+(-9x-5) | | 16(3)^x=40 | | -12h+9h-(-8h)=-10 | | 49^5x-2=(1/7)^11-x | | 4x–7=6x–5 | | 9x=16-11x | | 180=39+(-19+3x)+(x+28) | | (10*10)+(20*20)=(c*c) | | 20x+15=90 | | 7^x+5=45^x | | 10^+20^=c^ | | 0=4t(4t)+20 | | 165=(12x+33) | | 11w-4=8w-22 | | 1.09^x=2.43 | | (x-6)+(5x)=x | | -5y-2y+12=3y-8 | | 1/33=2x | | 180=(6x)+(9x+19)+56 | | -1(y+5)=-6 | | 19=1.5h | | 19+15=1.5h+2.75h | | 3r^2+r+9=7 | | 3x+30+12x-6=180 | | 4x—7=6x—5 | | 4a-9=-4a+13 | | 19h+1.5=15h+2.75 | | n^2+8n+4=0 | | x=(x+15)/4 | | 2x-15=-5x+27 |