If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(10*10)+(20*20)=(c*c)
We move all terms to the left:
(10*10)+(20*20)-((c*c))=0
We add all the numbers together, and all the variables
-((+c*c))+100+400=0
We add all the numbers together, and all the variables
-((+c*c))+500=0
We calculate terms in parentheses: -((+c*c)), so:We add all the numbers together, and all the variables
(+c*c)
We get rid of parentheses
c*c
Wy multiply elements
c^2
Back to the equation:
-(c^2)
-1c^2+500=0
a = -1; b = 0; c = +500;
Δ = b2-4ac
Δ = 02-4·(-1)·500
Δ = 2000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2000}=\sqrt{400*5}=\sqrt{400}*\sqrt{5}=20\sqrt{5}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{5}}{2*-1}=\frac{0-20\sqrt{5}}{-2} =-\frac{20\sqrt{5}}{-2} =-\frac{10\sqrt{5}}{-1} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{5}}{2*-1}=\frac{0+20\sqrt{5}}{-2} =\frac{20\sqrt{5}}{-2} =\frac{10\sqrt{5}}{-1} $
| 20x+15=90 | | 7^x+5=45^x | | 10^+20^=c^ | | 0=4t(4t)+20 | | 165=(12x+33) | | 11w-4=8w-22 | | 1.09^x=2.43 | | (x-6)+(5x)=x | | -5y-2y+12=3y-8 | | 1/33=2x | | 180=(6x)+(9x+19)+56 | | -1(y+5)=-6 | | 19=1.5h | | 19+15=1.5h+2.75h | | 3r^2+r+9=7 | | 3x+30+12x-6=180 | | 4x—7=6x—5 | | 4a-9=-4a+13 | | 19h+1.5=15h+2.75 | | n^2+8n+4=0 | | x=(x+15)/4 | | 2x-15=-5x+27 | | 45(w−1)−215=−5 | | 3x+8=2x2 | | -m/3+1=-8 | | -4x+27=2x-15 | | -2.4=-x+9.6 | | 180=35+(-5-8x)+(-2x) | | a10-1=3 | | a/3+24=8 | | 5v/8-7=-22 | | 24=2x/3+12 |