1/2x+x+x+1/2x=360

Simple and best practice solution for 1/2x+x+x+1/2x=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+x+x+1/2x=360 equation:



1/2x+x+x+1/2x=360
We move all terms to the left:
1/2x+x+x+1/2x-(360)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
2x+1/2x+1/2x-360=0
We multiply all the terms by the denominator
2x*2x-360*2x+1+1=0
We add all the numbers together, and all the variables
2x*2x-360*2x+2=0
Wy multiply elements
4x^2-720x+2=0
a = 4; b = -720; c = +2;
Δ = b2-4ac
Δ = -7202-4·4·2
Δ = 518368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{518368}=\sqrt{16*32398}=\sqrt{16}*\sqrt{32398}=4\sqrt{32398}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-720)-4\sqrt{32398}}{2*4}=\frac{720-4\sqrt{32398}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-720)+4\sqrt{32398}}{2*4}=\frac{720+4\sqrt{32398}}{8} $

See similar equations:

| 4-10=z÷-3 | | 128+5x=268 | | -3z+1/2=14 | | 3/4+z/16=z/4 | | a(4a-12)=8 | | 5/6y-7/12=-3/4-13/6 | | a-3/2=7a+2/8 | | -5(6n+1)=33+8n | | -2y=56 | | 4|w+2|-57=-9 | | -4(5t-2)+7t=6t-4 | | -6(1-3x)=-114 | | |3x-4|=x | | 11x–7=10x | | G(x+2)=5x^2+3x-4 | | (9x-11)(9x-11)=12 | | 80+0.20m=20+0.50m | | 9x4−30x3+25x2=0 | | y=2(23/12)-5 | | Z/5=z/15+4/3 | | 22-3b=10 | | 4x-6=-6(x-9) | | X^2-3x-268=0 | | Z/15+4/3=z/5 | | -5(4x-7)=-20-35 | | -20=-8y+4(y-2) | | 3(x–7)=5(x–1)–4 | | 3(6x-4)+2(11-4x)-3(3x+2)=-1 | | X^2+3x-81=243 | | 3y-1+y+31=6y+30-4y | | 7-5x=112-6x | | 154=7(1+7x) |

Equations solver categories