If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2x+1/4x+1/8=35/8
We move all terms to the left:
1/2x+1/4x+1/8-(35/8)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 4x!=0We add all the numbers together, and all the variables
x!=0/4
x!=0
x∈R
1/2x+1/4x+1/8-(+35/8)=0
We get rid of parentheses
1/2x+1/4x+1/8-35/8=0
We calculate fractions
(-1120x^2+1)/512x^2+256x/512x^2+128x/512x^2=0
We multiply all the terms by the denominator
(-1120x^2+1)+256x+128x=0
We add all the numbers together, and all the variables
(-1120x^2+1)+384x=0
We get rid of parentheses
-1120x^2+384x+1=0
a = -1120; b = 384; c = +1;
Δ = b2-4ac
Δ = 3842-4·(-1120)·1
Δ = 151936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{151936}=\sqrt{64*2374}=\sqrt{64}*\sqrt{2374}=8\sqrt{2374}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(384)-8\sqrt{2374}}{2*-1120}=\frac{-384-8\sqrt{2374}}{-2240} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(384)+8\sqrt{2374}}{2*-1120}=\frac{-384+8\sqrt{2374}}{-2240} $
| 3|2x-4|+8=4 | | x^2+10x+26=8 | | (10x-5)+(5x-5)=90 | | 5×^2=15x | | 20/70=x/100 | | 5(x+10)-6x=x | | 6a-8+2-a=-14(a+6)-7(1-2a) | | 6h+7h-16=6 | | 3x+6-3=90 | | 2(3n-4)=-2(n-2) | | 14a-32=8(1+3a) | | 5x-7x-13=-2x+8-13 | | 14a-32=8( | | 23/5=12/3+k | | 11(1+8k)=-429 | | 58.38÷5=x | | 0=-8p-9p | | 7(3x+1)=5x-7x | | 2z+1=10 | | 3.14*r*2=8*3.14 | | 2/3x-1/5=3/5x | | 1/3x-3/x=3/2 | | 3(2x-4)+8=4 | | v+24/15=8 | | 0.33(x+4)=0.5(x-3) | | -5=x-4-2 | | 15x−45=75x+75 | | 9r+2+1=8r+5 | | -25=8x-1 | | 4x2-6x+9=0 | | x+15=3,5x | | 5c+6=3c+2+6 |