If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2x+(x-35)+(x-40)+x=360
We move all terms to the left:
1/2x+(x-35)+(x-40)+x-(360)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
x+1/2x+(x-35)+(x-40)-360=0
We get rid of parentheses
x+1/2x+x+x-35-40-360=0
We multiply all the terms by the denominator
x*2x+x*2x+x*2x-35*2x-40*2x-360*2x+1=0
Wy multiply elements
2x^2+2x^2+2x^2-70x-80x-720x+1=0
We add all the numbers together, and all the variables
6x^2-870x+1=0
a = 6; b = -870; c = +1;
Δ = b2-4ac
Δ = -8702-4·6·1
Δ = 756876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756876}=\sqrt{4*189219}=\sqrt{4}*\sqrt{189219}=2\sqrt{189219}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-870)-2\sqrt{189219}}{2*6}=\frac{870-2\sqrt{189219}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-870)+2\sqrt{189219}}{2*6}=\frac{870+2\sqrt{189219}}{12} $
| h()=h(3)+5h(2) | | 1x+11=5(x-1) | | 9(2+3x)+2x=45 | | x^2+18x+27=8x+3 | | -12+8b=8b-6 | | -39v+40=9v-3 | | 3.2d-17.88=-d=30 | | 6x-1=19+2x | | -2(n+3)+5=6 | | -x-2=1/7x-10 | | h×h÷2=162 | | 18.4y=16.4y+20 | | –56=–4d–20 | | -10=-14+14n | | 1.15(2p+1.5)=4.25 | | (100x-0.5x^2)-(60x+300)=15000 | | 10-5x=-17 | | 0=-16t^2+125t+20 | | x(4.8)=6(5)-6 | | 1.15(2p+1.5)=4.35 | | A+31/2s+10=64 | | 24+5/6x=50 | | -6-6z=9z+10 | | −6=z4−3 | | -3+3=15+6x | | -94=8(-9k-4)-(-6k-4) | | (x+8)x=240 | | 5x-3x+X+7=2X+I+X+x | | 120=4/3x | | 5n-7=23(n=6) | | 2x+20=2.25 | | -4x+3(x-5)=-2(x+1) |