If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2x+(x-15)+1/2x+(x-25)+100=540
We move all terms to the left:
1/2x+(x-15)+1/2x+(x-25)+100-(540)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
1/2x+(x-15)+1/2x+(x-25)-440=0
We get rid of parentheses
1/2x+x+1/2x+x-15-25-440=0
We multiply all the terms by the denominator
x*2x+x*2x-15*2x-25*2x-440*2x+1+1=0
We add all the numbers together, and all the variables
x*2x+x*2x-15*2x-25*2x-440*2x+2=0
Wy multiply elements
2x^2+2x^2-30x-50x-880x+2=0
We add all the numbers together, and all the variables
4x^2-960x+2=0
a = 4; b = -960; c = +2;
Δ = b2-4ac
Δ = -9602-4·4·2
Δ = 921568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{921568}=\sqrt{16*57598}=\sqrt{16}*\sqrt{57598}=4\sqrt{57598}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-960)-4\sqrt{57598}}{2*4}=\frac{960-4\sqrt{57598}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-960)+4\sqrt{57598}}{2*4}=\frac{960+4\sqrt{57598}}{8} $
| -6n-6=-6-7n+1 | | Z-z+2z-2z+3z=9 | | x/2-15=2 | | d(1/6)+(2/3)=(1/4)(d-2) | | 2/3(k-8=20 | | -6r(3-6r)=-18+4r | | 4.9+1.2x=2.2x | | 8x+7+6x+16=40 | | 2q-q+5q+4q=20 | | 15=2/3b | | -14+x=4+3x | | 40x-1.50=9x+1.50 | | 4x-21=x+5 | | 2t+-8=0 | | 1/2x+(x-15)+1/2x+(x-15)=540 | | 5x-50=6x | | Y-y+3y+y-y=9 | | 4r-(-5r-7)=13 | | 4g-g+-3g=15 | | 2/r+4=4r | | 9+1.50x=40+1.50x | | 2p-p+p=6 | | 2/3(9x+12)-9=6(x-1)+2 | | w-14=6.2 | | -6m+1)=24 | | -x-21=5x+15 | | 2/3d=-12 | | 60-6v=624 | | -4a-1-6a=1-4a | | 19t-13t-4t-2t+t=19 | | -x+12=-40+3x | | -5-20=-5x-2x |