If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2x+(x-15)+1/2x+(x-15)=540
We move all terms to the left:
1/2x+(x-15)+1/2x+(x-15)-(540)=0
Domain of the equation: 2x!=0We get rid of parentheses
x!=0/2
x!=0
x∈R
1/2x+x+1/2x+x-15-15-540=0
We multiply all the terms by the denominator
x*2x+x*2x-15*2x-15*2x-540*2x+1+1=0
We add all the numbers together, and all the variables
x*2x+x*2x-15*2x-15*2x-540*2x+2=0
Wy multiply elements
2x^2+2x^2-30x-30x-1080x+2=0
We add all the numbers together, and all the variables
4x^2-1140x+2=0
a = 4; b = -1140; c = +2;
Δ = b2-4ac
Δ = -11402-4·4·2
Δ = 1299568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1299568}=\sqrt{16*81223}=\sqrt{16}*\sqrt{81223}=4\sqrt{81223}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1140)-4\sqrt{81223}}{2*4}=\frac{1140-4\sqrt{81223}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1140)+4\sqrt{81223}}{2*4}=\frac{1140+4\sqrt{81223}}{8} $
| 5x-50=6x | | Y-y+3y+y-y=9 | | 4r-(-5r-7)=13 | | 4g-g+-3g=15 | | 2/r+4=4r | | 9+1.50x=40+1.50x | | 2p-p+p=6 | | 2/3(9x+12)-9=6(x-1)+2 | | w-14=6.2 | | -6m+1)=24 | | -x-21=5x+15 | | 2/3d=-12 | | 60-6v=624 | | -4a-1-6a=1-4a | | 19t-13t-4t-2t+t=19 | | -x+12=-40+3x | | -5-20=-5x-2x | | (2x^2+1°)+(x-10°)=90° | | 1/(y-3)=3(y-5) | | 9w+5w-4w-8w=18 | | (2x^2+1°)+(x-10°)=90 | | 50-5x=6x | | 39+2x=-24-5x | | n=80,000*(1+0.014)100 | | 3(3x-12=24 | | 3=-(s-10) | | 3/5x-2/5=2 | | 7x-2=10x+1x+6x | | -5/8a+a=1-3a/2 | | 0.02(12)+0.05x=0.10(12+x) | | 6x-9+17=5×+13 | | 1/5(k-13)=3/4 |