1/2x(2)-8=16

Simple and best practice solution for 1/2x(2)-8=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x(2)-8=16 equation:



1/2x(2)-8=16
We move all terms to the left:
1/2x(2)-8-(16)=0
Domain of the equation: 2x2!=0
x^2!=0/2
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
1/2x2-24=0
We multiply all the terms by the denominator
-24*2x2+1=0
Wy multiply elements
-48x^2+1=0
a = -48; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-48)·1
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-48}=\frac{0-8\sqrt{3}}{-96} =-\frac{8\sqrt{3}}{-96} =-\frac{\sqrt{3}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-48}=\frac{0+8\sqrt{3}}{-96} =\frac{8\sqrt{3}}{-96} =\frac{\sqrt{3}}{-12} $

See similar equations:

| 2a+4+3a+10=44 | | (x+2)(2)=72 | | 0=(1+(x/12))^120 | | 0=(1+x/12)^120 | | 23x-7-9x+2=8 | | (4x+2)+(3x-2)=90 | | (1+x/12)^120=0 | | 15x(2)-16x+4=0 | | 1/3t-9=6 | | 8x-31=6x+13 | | 3x+4(8-x)=24 | | 3x+3(8-x)=24 | | 5=4s-11 | | 36x(2)+18x+2=0 | | 8x=9(x+5) | | 3x+2(8-x)=24 | | 3x+1(8-x)=24 | | 3x+1(8x-x)=24 | | 80=-5x+25 | | 18x-27x-5x(2)=0 | | 3^x+4=58 | | 9x(2)+6x=24 | | 12.71+0.05x=13.21-0.08x | | 12.71+0.05x(5)=13.21-0.08x | | 6(8x-4)-10x=12-14(2x-4) | | 3^x-4=58 | | 15x+7=9x+11 | | 35=0.625x^2 | | 15=12+2x | | 15x(2)-13+2=0 | | 11s+16=2s+7 | | 8(0.6x)-x=1 |

Equations solver categories