1/2t*4=t

Simple and best practice solution for 1/2t*4=t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2t*4=t equation:



1/2t*4=t
We move all terms to the left:
1/2t*4-(t)=0
Domain of the equation: 2t*4!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
-1t+1/2t*4=0
We multiply all the terms by the denominator
-1t*2t*4+1=0
Wy multiply elements
-8t^2*4+1=0
Wy multiply elements
-32t^2+1=0
a = -32; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-32)·1
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*-32}=\frac{0-8\sqrt{2}}{-64} =-\frac{8\sqrt{2}}{-64} =-\frac{\sqrt{2}}{-8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*-32}=\frac{0+8\sqrt{2}}{-64} =\frac{8\sqrt{2}}{-64} =\frac{\sqrt{2}}{-8} $

See similar equations:

| 154=(x+(2x+2)) | | 7x+5=4x=5=3x | | 2y=4-y=16 | | 18-5(x+4)=4x-8(3+2x) | | 2x*9=108 | | x/7-2.2=19.7 | | 8x^2+15x-17=0 | | 15x+343=343 | | x/5+9=25 | | 4x/5+10=10 | | 0.4(y+6)=4.8 | | 8x-14=4(2x+1) | | 3^x+1=5^2x-1 | | (27x-21x)/4=9.45 | | (7/7b+3)=(2/b-3) | | -9a^2-1=0 | | x(0.1)+x=716.67 | | -2v^2-1v+(v+2)^2=6 | | -5n+33=5(1-n) | | 34x-C=4x+180 | | 2x-6=29-15 | | Y=2x^2-12x+7 | | 42x2-4x=1 | | m(^)2+14m+60=0 | | 7y=12y+40 | | -2t-9=25 | | 0.1=(850-x)/x | | |a|=4 | | 80-2x=48 | | 2^7x=32 | | (v+2)^2=2v^2+v+6 | | |2+9x|=34 |

Equations solver categories