1/2p=87p=

Simple and best practice solution for 1/2p=87p= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2p=87p= equation:



1/2p=87p=
We move all terms to the left:
1/2p-(87p)=0
Domain of the equation: 2p!=0
p!=0/2
p!=0
p∈R
We add all the numbers together, and all the variables
-87p+1/2p=0
We multiply all the terms by the denominator
-87p*2p+1=0
Wy multiply elements
-174p^2+1=0
a = -174; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-174)·1
Δ = 696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{696}=\sqrt{4*174}=\sqrt{4}*\sqrt{174}=2\sqrt{174}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{174}}{2*-174}=\frac{0-2\sqrt{174}}{-348} =-\frac{2\sqrt{174}}{-348} =-\frac{\sqrt{174}}{-174} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{174}}{2*-174}=\frac{0+2\sqrt{174}}{-348} =\frac{2\sqrt{174}}{-348} =\frac{\sqrt{174}}{-174} $

See similar equations:

| 0.3(12x—16)=0.4(12—3x | | 5(-6y+8)-7=3y | | 8-(18+3x)=17 | | 30(3x+1)=42(x+11) | | 7d+5d+9=-9+10d | | -18x^2+4=0 | | –2.8(x+4.9)=18.2 | | 1/2=11/x | | 12(x-5=4(3x+5) | | -1/2(7z=4)+1/5(5z-15)= | | x/3=2/1 | | 3a+4/10+5a-2/4=3 | | N+3n+4=8n | | X=-2x-18 | | -10+5n+10=2(6n-10)-9n | | 40+6x+2=0 | | 8x–4=234 | | 8*n–4=234 | | .04x+1.32=1.08 | | 4/5(x+7)=20 | | 8n–4=234 | | -8h-7=-5h+8 | | 45(x+7)=20 | | 8.3(x–3.1)=–37.35 | | 6-3(2k-4)=10.8 | | 1.3x-0.7x=7 | | 505=5(t−723) | | 3+2+2^10=x | | 5+g+2=5g-5 | | 3x+5x+18=189 | | 8=6x-11 | | 5(-6x-3)+4(2-x)=61 |

Equations solver categories