If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2(12x+4)-4=-1/3(21x-6)
We move all terms to the left:
1/2(12x+4)-4-(-1/3(21x-6))=0
Domain of the equation: 2(12x+4)!=0
x∈R
Domain of the equation: 3(21x-6))!=0We calculate fractions
x∈R
(3x2/(2(12x+4)*3(21x-6)))+(-(-2x1)/(2(12x+4)*3(21x-6)))-4=0
We calculate terms in parentheses: +(3x2/(2(12x+4)*3(21x-6))), so:
3x2/(2(12x+4)*3(21x-6))
We multiply all the terms by the denominator
3x2
We add all the numbers together, and all the variables
3x^2
Back to the equation:
+(3x^2)
We calculate terms in parentheses: +(-(-2x1)/(2(12x+4)*3(21x-6))), so:a = 3; b = 2; c = -4;
-(-2x1)/(2(12x+4)*3(21x-6))
We add all the numbers together, and all the variables
-(-2x)/(2(12x+4)*3(21x-6))
We multiply all the terms by the denominator
-(-2x)
We get rid of parentheses
2x
Back to the equation:
+(2x)
Δ = b2-4ac
Δ = 22-4·3·(-4)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{13}}{2*3}=\frac{-2-2\sqrt{13}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{13}}{2*3}=\frac{-2+2\sqrt{13}}{6} $
| 13.5=4j+1.5 | | 6x+5=98 | | 48=8(r+9) | | 3(x-2)-(x-5)=11 | | –(c−22)=–55 | | 11=-7t-3 | | 4(3x-1)=24-8x | | 8(c-14)=-56 | | 4(3x-1)=8x-24 | | 2x*3=54 | | 2x²−6x=6x²−8x | | (3x+16)+(7x-10)+(2x+6)=180 | | 16=2(u+68) | | x(x+7)+10=0 | | 2(2x+3)=-6(x+8) | | x(x+7)=-10 | | z/4+9=-80 | | 15x-(3x-6)=54 | | 41=9t-4 | | z/4+7=-40 | | 3=m/4−2 | | z/4+4=29 | | z/3+8=-39 | | 5/2=3/(2x+10)+4/(2x+10) | | k/5+8=27 | | (x−3)²−(2x+5)²=−19−3x²+x | | 5/2=3/(2x+10)+2/(x+5) | | 4j−29=51 | | (x−3)^2−(2x+5)^2=−19−3x^2+x | | x/3=x/2+1 | | p/8=2,p= | | (x−3)^2−(2x+5)^2=−19−(3x)^2+x |