If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+7)+10=0
We multiply parentheses
x^2+7x+10=0
a = 1; b = 7; c = +10;
Δ = b2-4ac
Δ = 72-4·1·10
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3}{2*1}=\frac{-10}{2} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3}{2*1}=\frac{-4}{2} =-2 $
| 2(2x+3)=-6(x+8) | | x(x+7)=-10 | | z/4+9=-80 | | 15x-(3x-6)=54 | | 41=9t-4 | | z/4+7=-40 | | 3=m/4−2 | | z/4+4=29 | | z/3+8=-39 | | 5/2=3/(2x+10)+4/(2x+10) | | k/5+8=27 | | (x−3)²−(2x+5)²=−19−3x²+x | | 5/2=3/(2x+10)+2/(x+5) | | 4j−29=51 | | (x−3)^2−(2x+5)^2=−19−3x^2+x | | x/3=x/2+1 | | p/8=2,p= | | (x−3)^2−(2x+5)^2=−19−(3x)^2+x | | 3.2+8.3=1.5x+20.2 | | 110+24+x=180 | | 18×d=66×d= | | s+26/8=10 | | (x)*(x+12)=(x+6)*(X+2) | | 5=h+14/7 | | (x-2)/4=(2x+1)/3 | | 35=17+–9d | | 10p+p=0,p= | | 5x+4{x-2}=6x+7 | | 4.6x-19.86=3.6 | | j/8−34=–27 | | 15a—2a+-5a=-11 | | 19+2b=–13 |