1/10x+110=8-2x

Simple and best practice solution for 1/10x+110=8-2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/10x+110=8-2x equation:



1/10x+110=8-2x
We move all terms to the left:
1/10x+110-(8-2x)=0
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
We add all the numbers together, and all the variables
1/10x-(-2x+8)+110=0
We get rid of parentheses
1/10x+2x-8+110=0
We multiply all the terms by the denominator
2x*10x-8*10x+110*10x+1=0
Wy multiply elements
20x^2-80x+1100x+1=0
We add all the numbers together, and all the variables
20x^2+1020x+1=0
a = 20; b = 1020; c = +1;
Δ = b2-4ac
Δ = 10202-4·20·1
Δ = 1040320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1040320}=\sqrt{64*16255}=\sqrt{64}*\sqrt{16255}=8\sqrt{16255}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1020)-8\sqrt{16255}}{2*20}=\frac{-1020-8\sqrt{16255}}{40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1020)+8\sqrt{16255}}{2*20}=\frac{-1020+8\sqrt{16255}}{40} $

See similar equations:

| 4(2x-8)=1/4(8x+48)=1/2 | | 2(x+6)=6(x-6) | | 5/6x=300 | | 40x2=8 | | 5-(6x+3)=15 | | 5−(6x+3)=15 | | x-225/25=1.282 | | 5−(6x+3)=155−(6x+3)=15 | | 16=16y | | 5x+5+2=2(9)-6x | | 6/11=72/x | | 3(x+5)=1/2 | | 4a=80-16 | | 22j=264 | | 6/11=72/y | | 2t+19=-16-17+15t | | 7b-64=9b-86 | | -2.2x=61.6 | | -5z+1=10-6z | | -2(c-3)=-10 | | 3.8=3/p-7.2. | | 3x+10+2x+2x=2(x+8) | | 6j-10-10=10+j | | (3x+1)=83 | | 8x10=4x-30 | | 6x-9=6x-6 | | (2x+1)/4=x/3 | | 9y-10=-y | | -23+5x=42 | | |6x+7|=10 | | 2r=r-8 | | 2x(3x-18)/3=0 |

Equations solver categories