If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2=8
We move all terms to the left:
40x^2-(8)=0
a = 40; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·40·(-8)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*40}=\frac{0-16\sqrt{5}}{80} =-\frac{16\sqrt{5}}{80} =-\frac{\sqrt{5}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*40}=\frac{0+16\sqrt{5}}{80} =\frac{16\sqrt{5}}{80} =\frac{\sqrt{5}}{5} $
| 5-(6x+3)=15 | | 5−(6x+3)=15 | | x-225/25=1.282 | | 5−(6x+3)=155−(6x+3)=15 | | 16=16y | | 5x+5+2=2(9)-6x | | 6/11=72/x | | 3(x+5)=1/2 | | 4a=80-16 | | 22j=264 | | 6/11=72/y | | 2t+19=-16-17+15t | | 7b-64=9b-86 | | -2.2x=61.6 | | -5z+1=10-6z | | -2(c-3)=-10 | | 3.8=3/p-7.2. | | 3x+10+2x+2x=2(x+8) | | 6j-10-10=10+j | | (3x+1)=83 | | 8x10=4x-30 | | 6x-9=6x-6 | | (2x+1)/4=x/3 | | 9y-10=-y | | -23+5x=42 | | |6x+7|=10 | | 2r=r-8 | | 2x(3x-18)/3=0 | | 90=7z+6 | | x-4(x+12)=-9 | | -81=-3f | | (5m+5)+(8m-7)=180 |