1/10)x+149)=-2(3-x)

Simple and best practice solution for 1/10)x+149)=-2(3-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/10)x+149)=-2(3-x) equation:



1/10)x+149)=-2(3-x)
We move all terms to the left:
1/10)x+149)-(-2(3-x))=0
Domain of the equation: 10)x+149)-(-2(3!=0
x∈R
We add all the numbers together, and all the variables
1/10)x+149)-(-2(-1x+3))=0
We add all the numbers together, and all the variables
-1x+1/10)x+149)-(-2(=0
We multiply all the terms by the denominator
-1x*10)x+149)-(-2(+1=0
Wy multiply elements
-10x^2+1=0
a = -10; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-10)·1
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*-10}=\frac{0-2\sqrt{10}}{-20} =-\frac{2\sqrt{10}}{-20} =-\frac{\sqrt{10}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*-10}=\frac{0+2\sqrt{10}}{-20} =\frac{2\sqrt{10}}{-20} =\frac{\sqrt{10}}{-10} $

See similar equations:

| 3(n-6=27 | | 132+4x+8=180 | | -9x+7=25+2(5-x)X+-4 | | n/4+5=-7 | | 1/3x-7=16 | | 2y-200=52 | | -13x-8=-32 | | -0.08(t^2)+4.48=0 | | 0.5x0.34(300)=0.25(120) | | 80+52+(4x=8)=180 | | A=9,c=13 | | 6t+1/3=(t+7/6)+(t-5/6) | | 9x=24=2(x+2) | | ‒2x‒7=10 | | 1.5x+4.9x^2-5=0 | | -4x=-4x+4 | | X-73=10(3x+3)-27 | | 2.5x-1=10-7.5 | | 2n^2=134 | | 3x+9+2x=18-5x | | 4(4x+4)=4x+4 | | 0=x^2+16x-225 | | 5+3=m | | (3x-3)+(2x+13)=180 | | 11a^2-32a-37=0 | | 0.7(x+3)=2.1 | | 4x-2=-4x-2 | | 10(0)=2y+9 | | 10z+3=68 | | 65+80+11x+2=180 | | 18x+28=x+380 | | 41(1-4p)=23+3p |

Equations solver categories