-9x+7=25+2(5-x)X+-4

Simple and best practice solution for -9x+7=25+2(5-x)X+-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -9x+7=25+2(5-x)X+-4 equation:



-9x+7=25+2(5-x)x+-4
We move all terms to the left:
-9x+7-(25+2(5-x)x+-4)=0
We add all the numbers together, and all the variables
-9x-(25+2(-1x+5)x+-4)+7=0
We use the square of the difference formula
-9x-(25+2(-1x+5)x-4)+7=0
We calculate terms in parentheses: -(25+2(-1x+5)x-4), so:
25+2(-1x+5)x-4
determiningTheFunctionDomain 2(-1x+5)x+25-4
We add all the numbers together, and all the variables
2(-1x+5)x+21
We multiply parentheses
-2x^2+10x+21
Back to the equation:
-(-2x^2+10x+21)
We get rid of parentheses
2x^2-10x-9x-21+7=0
We add all the numbers together, and all the variables
2x^2-19x-14=0
a = 2; b = -19; c = -14;
Δ = b2-4ac
Δ = -192-4·2·(-14)
Δ = 473
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{473}}{2*2}=\frac{19-\sqrt{473}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{473}}{2*2}=\frac{19+\sqrt{473}}{4} $

See similar equations:

| n/4+5=-7 | | 1/3x-7=16 | | 2y-200=52 | | -13x-8=-32 | | -0.08(t^2)+4.48=0 | | 0.5x0.34(300)=0.25(120) | | 80+52+(4x=8)=180 | | A=9,c=13 | | 6t+1/3=(t+7/6)+(t-5/6) | | 9x=24=2(x+2) | | ‒2x‒7=10 | | 1.5x+4.9x^2-5=0 | | -4x=-4x+4 | | X-73=10(3x+3)-27 | | 2.5x-1=10-7.5 | | 2n^2=134 | | 3x+9+2x=18-5x | | 4(4x+4)=4x+4 | | 0=x^2+16x-225 | | 5+3=m | | (3x-3)+(2x+13)=180 | | 11a^2-32a-37=0 | | 0.7(x+3)=2.1 | | 4x-2=-4x-2 | | 10(0)=2y+9 | | 10z+3=68 | | 65+80+11x+2=180 | | 18x+28=x+380 | | 41(1-4p)=23+3p | | 9s3-27s2+8s=-12s | | 6x=x-3 | | 18x+-28=x+380 |

Equations solver categories