If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/(x-1)+4/2x-2=3
We move all terms to the left:
1/(x-1)+4/2x-2-(3)=0
Domain of the equation: (x-1)!=0
We move all terms containing x to the left, all other terms to the right
x!=1
x∈R
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
1/(x-1)+4/2x-5=0
We calculate fractions
2x/(2x^2-2x)+(4x-4)/(2x^2-2x)-5=0
We multiply all the terms by the denominator
2x+(4x-4)-5*(2x^2-2x)=0
We multiply parentheses
-10x^2+2x+(4x-4)+10x=0
We get rid of parentheses
-10x^2+2x+4x+10x-4=0
We add all the numbers together, and all the variables
-10x^2+16x-4=0
a = -10; b = 16; c = -4;
Δ = b2-4ac
Δ = 162-4·(-10)·(-4)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{6}}{2*-10}=\frac{-16-4\sqrt{6}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{6}}{2*-10}=\frac{-16+4\sqrt{6}}{-20} $
| (8x-5)(4x-7)=0 | | 550=(x+3)(x) | | 550=(x+3(x) | | -7(2x-3)=6x-11-4x | | y÷8+19=30 | | -3x+11=13 | | -11x-6=4x+39 | | 45x=26 | | 4=116u+2 | | 10,000-50n=3,000 | | C+0.7x=33,450 | | 20+2p=50 | | 6/7(4u+4)3/5u=7/5(3u+10) | | -300-5d=150 | | (1/2)^n=4(^n+1) | | 2-4(6x+2)=(-3x+4)-8 | | 120u+4+21u=147u+490 | | 2x^2-3x-2=20589 | | 3*2w-9=0 | | 5(t-1)+6=9 | | 7-2(d-4)=3(2d+3) | | 4x^2-15x-4=143.489 | | 6-(x-1)=3(x+5) | | 7-(n/2)=-6 | | -3*y=42 | | 2y^2-6-y=0 | | 4x-3-2x+6=2x+3 | | x+3+x+3=2x-4 | | 10(2x+4)9x=6(6x+1) | | 63.25=2^x | | x2−6x+19=0 | | 3/x-6=9 |