1.5y+17=-2/3y-21

Simple and best practice solution for 1.5y+17=-2/3y-21 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1.5y+17=-2/3y-21 equation:



1.5y+17=-2/3y-21
We move all terms to the left:
1.5y+17-(-2/3y-21)=0
Domain of the equation: 3y-21)!=0
y∈R
We get rid of parentheses
1.5y+2/3y+21+17=0
We multiply all the terms by the denominator
(1.5y)*3y+21*3y+17*3y+2=0
We add all the numbers together, and all the variables
(+1.5y)*3y+21*3y+17*3y+2=0
We multiply parentheses
3y^2+21*3y+17*3y+2=0
Wy multiply elements
3y^2+63y+51y+2=0
We add all the numbers together, and all the variables
3y^2+114y+2=0
a = 3; b = 114; c = +2;
Δ = b2-4ac
Δ = 1142-4·3·2
Δ = 12972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12972}=\sqrt{4*3243}=\sqrt{4}*\sqrt{3243}=2\sqrt{3243}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(114)-2\sqrt{3243}}{2*3}=\frac{-114-2\sqrt{3243}}{6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(114)+2\sqrt{3243}}{2*3}=\frac{-114+2\sqrt{3243}}{6} $

See similar equations:

| 1/2x-2=x-1/4 | | 4(3x+1)=6-x | | 2.5(-3p-8+5p=4(2.25p+5.5)+15.5 | | 3x-18=-x-21 | | 2x=3=5x=15 | | 2-2=4+2x | | -8-5k=64+3k | | k/4–5=2 | | -5(5+x)=x+3 | | 2(n-2)=-20 | | -10=2(-3x+1) | | -18+5z=7z+12 | | 3(x-2)2(x+9)=0 | | 14(8x+8)=20 | | 5x-0.5x=0 | | X+(x-20)+(x-20+x)=120 | | 4x+2+8x=50 | | 5x-1.25=16.00 | | 5x-9=5x+12. | | -3x+12=-54 | | 8x-5=70+3x | | 511/24-0.375=a | | k/4-5=2 | | 26.00+21.75f=41.00+14.25f | | 6x+8+7x-2=84 | | 4x+3-4=812x+1 | | -4x+2=-2x+-6 | | -5(1-5x)+5(-8-2)=30 | | -8x-24-4x=60 | | (x-15)=5x+23 | | -34-3x=9x-12 | | -7.9+2.3=6.62-7.4x |

Equations solver categories