If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1-x-1/2x=1-5/2x
We move all terms to the left:
1-x-1/2x-(1-5/2x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 2x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-x-1/2x-(-5/2x+1)+1=0
We add all the numbers together, and all the variables
-1x-1/2x-(-5/2x+1)+1=0
We get rid of parentheses
-1x-1/2x+5/2x-1+1=0
We multiply all the terms by the denominator
-1x*2x-1*2x+1*2x-1+5=0
We add all the numbers together, and all the variables
-1x*2x-1*2x+1*2x+4=0
Wy multiply elements
-2x^2-2x+2x+4=0
We add all the numbers together, and all the variables
-2x^2+4=0
a = -2; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-2)·4
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*-2}=\frac{0-4\sqrt{2}}{-4} =-\frac{4\sqrt{2}}{-4} =-\frac{\sqrt{2}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*-2}=\frac{0+4\sqrt{2}}{-4} =\frac{4\sqrt{2}}{-4} =\frac{\sqrt{2}}{-1} $
| 10x+8+98=180 | | a/a-2=7/5 | | 7x-2=10-1 | | 8=2^2x-1 | | 5y^2-4y+3=0 | | 3/5x=3/20 | | x-(90-x)=8 | | F(x)=2x-5-4x^2 | | 600x+3000=-1200 | | 8=1/3r+2 | | j-1.2(0.4-0.1j)=2.88 | | 3x-(7x+2)=2 | | 2x/2=15 | | X+x+1=101 | | 3x+30=x+70 | | 4x-20=3x+37 | | -(x-10)=2(3x-2) | | 4x+32=42+3x | | -41+3x=77+90 | | (x+1)^0.5=x | | 0.7=0.25+0.5/x | | 13a^2-26a-55=0 | | 7,5-0,3x=9 | | -2(x-2)=3x-1 | | x=96=84 | | 10. 48=3x+12 | | 16-x=1/64 | | 5+49x=21x=21 | | 3x-1+3x-12=0 | | 4m+2/5=1 | | x^2-13=8x+20 | | x+122=6x+2,x=+24 |