If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1+10x^2=22
We move all terms to the left:
1+10x^2-(22)=0
We add all the numbers together, and all the variables
10x^2-21=0
a = 10; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·10·(-21)
Δ = 840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{840}=\sqrt{4*210}=\sqrt{4}*\sqrt{210}=2\sqrt{210}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{210}}{2*10}=\frac{0-2\sqrt{210}}{20} =-\frac{2\sqrt{210}}{20} =-\frac{\sqrt{210}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{210}}{2*10}=\frac{0+2\sqrt{210}}{20} =\frac{2\sqrt{210}}{20} =\frac{\sqrt{210}}{10} $
| 11x+12=9x+28 | | 20x-39=15-89 | | 20x-39=-89-8 | | 8x+34=12x+14 | | t^2+2.5t=-1.44 | | -12=-4/9y | | 25x^2-70x+29=0 | | 2/5u=-6 | | 2x-14=27 | | 29=x/4+12 | | 85=5x-15 | | 5(t-3)+7t=4(3t-3)-10 | | —48=6(x-3) | | 16x+19(1.2)=478 | | 16x+19(1.2)=488 | | 3x+68/3=x+6 | | 6(x-5)=24x-30 | | 7(-2k+40-6=7k-20 | | 3y+10=19-(y-3) | | 4(1+x)+2x=-3(x+1) | | 3x−12=21 | | 16(x-3)=4(8x+8) | | 4(t-4)+8t=6(2t+4)-10 | | 7x+1=5+3x | | 5÷x=30 | | 0=-70-19t+4.9t^2 | | 0=-70-17t+4.9t^2 | | 11x−5=9(x+9) | | 8+p/3=13 | | 7x+18=9x+13 | | 11x-5=9(x+9) | | 45=-23x+24 |