If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1+(5/9)y=(14(54y+108))
We move all terms to the left:
1+(5/9)y-((14(54y+108)))=0
Domain of the equation: 9)y!=0We add all the numbers together, and all the variables
y!=0/1
y!=0
y∈R
(+5/9)y-((14(54y+108)))+1=0
We multiply parentheses
5y^2-((14(54y+108)))+1=0
We calculate terms in parentheses: -((14(54y+108))), so:We get rid of parentheses
(14(54y+108))
We calculate terms in parentheses: +(14(54y+108)), so:We get rid of parentheses
14(54y+108)
We multiply parentheses
756y+1512
Back to the equation:
+(756y+1512)
756y+1512
Back to the equation:
-(756y+1512)
5y^2-756y-1512+1=0
We add all the numbers together, and all the variables
5y^2-756y-1511=0
a = 5; b = -756; c = -1511;
Δ = b2-4ac
Δ = -7562-4·5·(-1511)
Δ = 601756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{601756}=\sqrt{4*150439}=\sqrt{4}*\sqrt{150439}=2\sqrt{150439}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-756)-2\sqrt{150439}}{2*5}=\frac{756-2\sqrt{150439}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-756)+2\sqrt{150439}}{2*5}=\frac{756+2\sqrt{150439}}{10} $
| (8r+6)+(4r−1)=14 | | 4b(5+b)=6 | | 8n−(3n+5)=25 | | 2x+1+2(x-1)=16-4/4 | | 1+(5/9)y=(-7/18)((3y+6)/2) | | 162=(n-2)180/n | | 10x-2-3x=5x+6 | | 1/4z-4=12 | | (2u+3)(6+u)=0 | | 0=x^2-16/x^2+3 | | w/5+6=2 | | |x-8|=2x+4 | | -x2=5x+8 | | (2x-1)(2x-2)=0 | | 20/40=x/100 | | 4x+2/2+8=2x+9 | | 36+12y=36+12y | | 4b-2(b+3)=9 | | 9/10c=-36 | | -5+5a-2=3a-7+2a | | 8+3q=92q | | 2y(y+5)(y-3)=0 | | .5(3x+4)=20 | | 2/3x+4=1/2x | | 15+x=4x+10 | | 1-|1+3x|=6 | | -2(1+2v)=2(5v-1) | | 7(2-x)=22-3x | | 106y=15+2 | | +z+8/6=2z+12/9-42/9 | | (2x+3)-x(4x-3)=30 | | -3(6p+5)=-15+4p |