0=9(x2+6x)-18

Simple and best practice solution for 0=9(x2+6x)-18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=9(x2+6x)-18 equation:



0=9(x2+6x)-18
We move all terms to the left:
0-(9(x2+6x)-18)=0
We add all the numbers together, and all the variables
-(9(+x^2+6x)-18)+0=0
We add all the numbers together, and all the variables
-(9(+x^2+6x)-18)=0
We calculate terms in parentheses: -(9(+x^2+6x)-18), so:
9(+x^2+6x)-18
We multiply parentheses
9x^2+54x-18
Back to the equation:
-(9x^2+54x-18)
We get rid of parentheses
-9x^2-54x+18=0
a = -9; b = -54; c = +18;
Δ = b2-4ac
Δ = -542-4·(-9)·18
Δ = 3564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3564}=\sqrt{324*11}=\sqrt{324}*\sqrt{11}=18\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-18\sqrt{11}}{2*-9}=\frac{54-18\sqrt{11}}{-18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+18\sqrt{11}}{2*-9}=\frac{54+18\sqrt{11}}{-18} $

See similar equations:

| x+7/8=1/9 | | 1-3(x+3)+4=2 | | 2x^2+7x+18=0 | | 21(x+1)=12(x+4) | | 4.5x-7.45=7.4 | | 2c2-2c=0 | | 5(x+3)=3(x+3) | | 2c^2-2c=0 | | 3(y-2)=-8y+5 | | (9+z)(4z-3)=0 | | 5^x=29 | | 12.50/8=10/x | | (2x+9)*(x-5)=50 | | u^2+8u+17=0 | | y=2/5y-8 | | 49^x-50(7^x)+49=0 | | 25=15t-1.86t^2 | | S=2x3.14x10xx | | 9x²-11x-20=0 | | 10(5x+0.08)=273 | | 2x+x+3x=28 | | F(0)=4x+10 | | 4x/5+40°=130° | | 10/21=13/(5x+0.08) | | 15(x-4)-3(x-9)+5(x+6)=0 | | F(-3)=4x+10 | | 2.10(3x+2)=70 | | 4(x+5)+3(x-1)=-13 | | F(8)=4x+10 | | 7(x-4)^2-21=0 | | -3(3y+7)=20 | | x=67-(27+19+74/6) |

Equations solver categories