If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+-18t+210
We move all terms to the left:
0-(-16t^2+-18t+210)=0
We add all the numbers together, and all the variables
-(-16t^2+-18t+210)=0
We use the square of the difference formula
-(-16t^2-18t+210)=0
We get rid of parentheses
16t^2+18t-210=0
a = 16; b = 18; c = -210;
Δ = b2-4ac
Δ = 182-4·16·(-210)
Δ = 13764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13764}=\sqrt{4*3441}=\sqrt{4}*\sqrt{3441}=2\sqrt{3441}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{3441}}{2*16}=\frac{-18-2\sqrt{3441}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{3441}}{2*16}=\frac{-18+2\sqrt{3441}}{32} $
| .5x-6=9 | | 12.4=2g+3.91 | | 46-15^3+28=a | | 150m+100m+40,200=38,600+150m | | x^2-14x+49+121=0 | | 15-c=60 | | 1/4x-7=1/3x-8 | | 9v^2-24=16 | | z/8=23 | | 18+3x=10+4x | | 12y+6=6(24+1) | | -3t+-12=t+8 | | (-5)=x^2-2x+5 | | -5y+1+3y=-15 | | -56=4v+4 | | -5(1/7x+3.4)=-21 | | 10(x+3)-(-9×-4)=x-5+3 | | -2u-2=-6(u-5) | | b2=b−19 | | 17x+2+70(9x+4)=180° | | 13+1.75t=-3 | | -7r+5=33 | | x5=x+47 | | 3d=40/12 | | 15y+8=5y-12 | | 3y-7=18y+38 | | -7+-2x=-2x | | -2u-2=-9(u-5) | | 1/2(x+4)+1/2(4x)+1/2(10x-10)=288 | | 3/7w-11=-4/3w | | 5x-81=-x+87 | | 10a=8a+1 |