0=(8+i)(2+7i)

Simple and best practice solution for 0=(8+i)(2+7i) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(8+i)(2+7i) equation:



0=(8+i)(2+7i)
We move all terms to the left:
0-((8+i)(2+7i))=0
We add all the numbers together, and all the variables
-((i+8)(7i+2))+0=0
We add all the numbers together, and all the variables
-((i+8)(7i+2))=0
We multiply parentheses ..
-((+7i^2+2i+56i+16))=0
We calculate terms in parentheses: -((+7i^2+2i+56i+16)), so:
(+7i^2+2i+56i+16)
We get rid of parentheses
7i^2+2i+56i+16
We add all the numbers together, and all the variables
7i^2+58i+16
Back to the equation:
-(7i^2+58i+16)
We get rid of parentheses
-7i^2-58i-16=0
a = -7; b = -58; c = -16;
Δ = b2-4ac
Δ = -582-4·(-7)·(-16)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2916}=54$
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-58)-54}{2*-7}=\frac{4}{-14} =-2/7 $
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-58)+54}{2*-7}=\frac{112}{-14} =-8 $

See similar equations:

| 1/2a-2/3a=(-4/3-3/2a) | | -3|x-2|-15=2 | | 11x+13x=120 | | (x²+5)=125 | | 3x-2=4+5x | | 3y/(-2)=24 | | 1-2x=6-3x | | 2(2j+1)=j+9 | | 2(12v+16)-16v=-8 | | -16x^2+16x+850=0 | | |6-2x|=6 | | (x+1)^2-(x-1)^2-(4x-360)=(3x)^3 | | -3(t-3)+6t=7t-7 | | (3x-5)(4x+6)=0 | | 7x+3(2x-5)=5(2x-3)+3 | | 6x(x+7)=3(2x+1) | | 1,402.234+c=1932.321 | | 0.80x+66=13.2 | | 5−4+7x+1=6x+7 | | (4/5)g+2=6 | | 9y-30y+25y=0 | | (6x+2)+118=180 | | m+11.7=10.5 | | 0.80x+0.55(120)=0.40(33) | | x=5(2x+12)+2 | | 80=-16t^2+100t+5 | | 6x^2-5x+3=7 | | -2(t-15)=18 | | a+3a=2a-7 | | 5−4+7x+1=x+7 | | 180=48+x+44 | | 4=k-3/4 |

Equations solver categories