0=(3x+5)(2-x)

Simple and best practice solution for 0=(3x+5)(2-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(3x+5)(2-x) equation:



0=(3x+5)(2-x)
We move all terms to the left:
0-((3x+5)(2-x))=0
We add all the numbers together, and all the variables
-((3x+5)(-1x+2))+0=0
We add all the numbers together, and all the variables
-((3x+5)(-1x+2))=0
We multiply parentheses ..
-((-3x^2+6x-5x+10))=0
We calculate terms in parentheses: -((-3x^2+6x-5x+10)), so:
(-3x^2+6x-5x+10)
We get rid of parentheses
-3x^2+6x-5x+10
We add all the numbers together, and all the variables
-3x^2+x+10
Back to the equation:
-(-3x^2+x+10)
We get rid of parentheses
3x^2-x-10=0
We add all the numbers together, and all the variables
3x^2-1x-10=0
a = 3; b = -1; c = -10;
Δ = b2-4ac
Δ = -12-4·3·(-10)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-11}{2*3}=\frac{-10}{6} =-1+2/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+11}{2*3}=\frac{12}{6} =2 $

See similar equations:

| 0=(3x+5)(2-5) | | P(x)=5x^2+20x+230 | | 2x+3+7x=12 | | n+1/4=3n-11/2/6 | | 0=-3x^+x+10 | | 1-2(1+3x)-2)(x+2)+3x)=-1 | | 3(x−1/4)=13/6 | | x/7+3=0 | | z/7+5=10 | | 9a+5=7a | | 7+16n-6=5n+113-3n | | 2x^2+4x-16=4 | | 8x+2=26+5x | | 36-8x+4x-16=40 | | (14k–12)=(7k–5) | | x/5=21/3 | | 5x+-15=-60 | | 1+1/3u-6=2+1/3+8 | | 3a−5=3+5a | | 6^x=53 | | -6+4r=-22 | | 30x+120=270 | | 10+2x÷3=11 | | -18x=24.3 | | 8.8^x=91 | | 150x+90=-210 | | 10-3x4=7-3x2 | | 4(x-6)+12=96 | | 4y=4/9y+11/3 | | 2(x-6)+12=96 | | 3(x+1)-2x=x-(2+3)(3-2x) | | 44/9y=11/3 |

Equations solver categories