0=(2z-9)(2-z)

Simple and best practice solution for 0=(2z-9)(2-z) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(2z-9)(2-z) equation:



0=(2z-9)(2-z)
We move all terms to the left:
0-((2z-9)(2-z))=0
We add all the numbers together, and all the variables
-((2z-9)(-1z+2))+0=0
We add all the numbers together, and all the variables
-((2z-9)(-1z+2))=0
We multiply parentheses ..
-((-2z^2+4z+9z-18))=0
We calculate terms in parentheses: -((-2z^2+4z+9z-18)), so:
(-2z^2+4z+9z-18)
We get rid of parentheses
-2z^2+4z+9z-18
We add all the numbers together, and all the variables
-2z^2+13z-18
Back to the equation:
-(-2z^2+13z-18)
We get rid of parentheses
2z^2-13z+18=0
a = 2; b = -13; c = +18;
Δ = b2-4ac
Δ = -132-4·2·18
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-5}{2*2}=\frac{8}{4} =2 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+5}{2*2}=\frac{18}{4} =4+1/2 $

See similar equations:

| Y=800-20x | | 0.02(y-9)+0.04y=0.18y-0.9 | | 16x-(-4x)=100 | | X×x-44=100 | | 3x•8•4x=-8(x-6)-8(13x•5) | | 4x-2x+4=2(x+2) | | |1/2(6x-8)-2=39| | | 35=8k | | 8x+3=-8+x+17 | | 2(x+1)+2=5x-3(-2+x) | | Y=-5x+0 | | 2/3(3x+9)=-2(2x+60 | | Y-15=3(x-2) | | 4-5x=2x+3 | | 4x2−4x−35=0 | | 128=4(2+7x)-7x | | (Y/5)-2=y | | 10=26—2(p+8) | | -2(-5-3x)=6x+9 | | 14-2m=-1 | | -2(2x+3)+8(1+7x)=-50 | | 6x-3-3x=2-3x+7 | | v2=81/25 | | 1p+4/4=3 | | 13d-5=-8(6+5d) | | 5=(2x-1)+21=x | | (1/2)x-6=-18 | | 8=-13-7x | | 2×4y=15 | | -8(x-8)+8(x+1)=-1 | | -33=4x+5x+3 | | 2.5(n+4)=2.5n+0.5n= |

Equations solver categories