0=(125+5x)(100-2x)-(500+30(100-2x))

Simple and best practice solution for 0=(125+5x)(100-2x)-(500+30(100-2x)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(125+5x)(100-2x)-(500+30(100-2x)) equation:



0=(125+5x)(100-2x)-(500+30(100-2x))
We move all terms to the left:
0-((125+5x)(100-2x)-(500+30(100-2x)))=0
We add all the numbers together, and all the variables
-((5x+125)(-2x+100)-(500+30(-2x+100)))+0=0
We add all the numbers together, and all the variables
-((5x+125)(-2x+100)-(500+30(-2x+100)))=0
We multiply parentheses ..
-((-10x^2+500x-250x+12500)-(500+30(-2x+100)))=0
We calculate terms in parentheses: -((-10x^2+500x-250x+12500)-(500+30(-2x+100))), so:
(-10x^2+500x-250x+12500)-(500+30(-2x+100))
We get rid of parentheses
-10x^2+500x-250x-(500+30(-2x+100))+12500
We calculate terms in parentheses: -(500+30(-2x+100)), so:
500+30(-2x+100)
determiningTheFunctionDomain 30(-2x+100)+500
We multiply parentheses
-60x+3000+500
We add all the numbers together, and all the variables
-60x+3500
Back to the equation:
-(-60x+3500)
We add all the numbers together, and all the variables
-10x^2+250x-(-60x+3500)+12500
We get rid of parentheses
-10x^2+250x+60x-3500+12500
We add all the numbers together, and all the variables
-10x^2+310x+9000
Back to the equation:
-(-10x^2+310x+9000)
We get rid of parentheses
10x^2-310x-9000=0
a = 10; b = -310; c = -9000;
Δ = b2-4ac
Δ = -3102-4·10·(-9000)
Δ = 456100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{456100}=\sqrt{100*4561}=\sqrt{100}*\sqrt{4561}=10\sqrt{4561}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-310)-10\sqrt{4561}}{2*10}=\frac{310-10\sqrt{4561}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-310)+10\sqrt{4561}}{2*10}=\frac{310+10\sqrt{4561}}{20} $

See similar equations:

| 3x-+5x+9x=15 | | 8(x-2)+5=12x-4(x-9) | | 12b^2+19b-21=0 | | 16x+48x=0 | | (9x-44)+(9x-28)=180 | | -6=-3(4+k)-3(k+6) | | 3(2x+4)=3(x-3)+10 | | (4x+8)+(4x+2)=90 | | 56=3u+11 | | -6/5x-6/5x=2/3-4/3 | | P(x)=(125+5x)(100-2x)-(500+30(100-2x)) | | 9x+21x=180 | | Y=5,000+500x | | 3/4/1/2=1/6/x | | 2*3^(x-2)=36^(x-1) | | 2*3^x-2=36^x-1 | | Y/3+4/5=y/5-4/5 | | 26+26+x=180 | | 12x-2/7=13/15-5x | | 5x/3-5=15 | | 3(2x-3)-2=3(x-3)+10 | | 3(5-3x)=2(3x+1) | | -182=7(-3v-8) | | 7(6+v)=0 | | 3(3-4x)=2(5x-1) | | 9x-4=6x-58 | | 5x+(-4x)=-10+14 | | 113+90+x=180 | | 12x-4x+102=7x+10*3 | | 12x-4x+102=7x+103 | | 6a+7=3a+47 | | x-3+10=20 |

Equations solver categories