P(x)=(125+5x)(100-2x)-(500+30(100-2x))

Simple and best practice solution for P(x)=(125+5x)(100-2x)-(500+30(100-2x)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(x)=(125+5x)(100-2x)-(500+30(100-2x)) equation:



(P)=(125+5P)(100-2P)-(500+30(100-2P))
We move all terms to the left:
(P)-((125+5P)(100-2P)-(500+30(100-2P)))=0
We add all the numbers together, and all the variables
P-((5P+125)(-2P+100)-(500+30(-2P+100)))=0
We multiply parentheses ..
-((-10P^2+500P-250P+12500)-(500+30(-2P+100)))+P=0
We calculate terms in parentheses: -((-10P^2+500P-250P+12500)-(500+30(-2P+100))), so:
(-10P^2+500P-250P+12500)-(500+30(-2P+100))
We get rid of parentheses
-10P^2+500P-250P-(500+30(-2P+100))+12500
We calculate terms in parentheses: -(500+30(-2P+100)), so:
500+30(-2P+100)
determiningTheFunctionDomain 30(-2P+100)+500
We multiply parentheses
-60P+3000+500
We add all the numbers together, and all the variables
-60P+3500
Back to the equation:
-(-60P+3500)
We add all the numbers together, and all the variables
-10P^2+250P-(-60P+3500)+12500
We get rid of parentheses
-10P^2+250P+60P-3500+12500
We add all the numbers together, and all the variables
-10P^2+310P+9000
Back to the equation:
-(-10P^2+310P+9000)
We get rid of parentheses
10P^2-310P+P-9000=0
We add all the numbers together, and all the variables
10P^2-309P-9000=0
a = 10; b = -309; c = -9000;
Δ = b2-4ac
Δ = -3092-4·10·(-9000)
Δ = 455481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{455481}=\sqrt{9*50609}=\sqrt{9}*\sqrt{50609}=3\sqrt{50609}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-309)-3\sqrt{50609}}{2*10}=\frac{309-3\sqrt{50609}}{20} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-309)+3\sqrt{50609}}{2*10}=\frac{309+3\sqrt{50609}}{20} $

See similar equations:

| 9x+21x=180 | | Y=5,000+500x | | 3/4/1/2=1/6/x | | 2*3^(x-2)=36^(x-1) | | 2*3^x-2=36^x-1 | | Y/3+4/5=y/5-4/5 | | 26+26+x=180 | | 12x-2/7=13/15-5x | | 5x/3-5=15 | | 3(2x-3)-2=3(x-3)+10 | | 3(5-3x)=2(3x+1) | | -182=7(-3v-8) | | 7(6+v)=0 | | 3(3-4x)=2(5x-1) | | 9x-4=6x-58 | | 5x+(-4x)=-10+14 | | 113+90+x=180 | | 12x-4x+102=7x+10*3 | | 12x-4x+102=7x+103 | | 6a+7=3a+47 | | x-3+10=20 | | 3.00=54/x | | |5y-3|=|4y+1| | | 80-10-x=40 | | 91=11^x | | (x+6)=(8x+5) | | (14+2x)^2+(18+2x)^2=72 | | 30+90x=180 | | x+4=2x-27 | | 30=k+30 | | x+(x+12)+(190-3x)=180 | | 2y-7y+5y=-29 |

Equations solver categories