0=(-x+1)(-3x+4)

Simple and best practice solution for 0=(-x+1)(-3x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(-x+1)(-3x+4) equation:



0=(-x+1)(-3x+4)
We move all terms to the left:
0-((-x+1)(-3x+4))=0
We add all the numbers together, and all the variables
-((-1x+1)(-3x+4))+0=0
We add all the numbers together, and all the variables
-((-1x+1)(-3x+4))=0
We multiply parentheses ..
-((+3x^2-4x-3x+4))=0
We calculate terms in parentheses: -((+3x^2-4x-3x+4)), so:
(+3x^2-4x-3x+4)
We get rid of parentheses
3x^2-4x-3x+4
We add all the numbers together, and all the variables
3x^2-7x+4
Back to the equation:
-(3x^2-7x+4)
We get rid of parentheses
-3x^2+7x-4=0
a = -3; b = 7; c = -4;
Δ = b2-4ac
Δ = 72-4·(-3)·(-4)
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-1}{2*-3}=\frac{-8}{-6} =1+1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+1}{2*-3}=\frac{-6}{-6} =1 $

See similar equations:

| ^2x+14=x-5 | | (1-i)^4=0 | | (X+6)(c-9)=0 | | 2.6t-t=3+1.5t | | 0=(x+6)(x+0) | | c+4.5=8.0 | | 3x+9-7=x+x+25 | | X-2÷+x-2(x-4)÷6=x÷3 | | x+67=x+125=180 | | 8-2x/5=0 | | 6-7w=-w+6 | | -5x+4(3+2.5)=8x+12-3x | | -2+6d=4d+8 | | 3x+4x/5=180 | | 15x=-20x+11 | | -7/4u=21 | | (2x-10)+65-x=180 | | 5y/9=-15 | | (4(x-8))/(5)=16 | | -21=-3/8u | | 5(z-0.25)=8 | | 2x+20°=x+80 | | 12x+28=32 | | -13=w/6-4 | | 16x=-6x | | 6x+24-x=2x-15 | | 88.20=1225(r)3 | | 25=6x+34 | | 6(x-​6)+8=8x-8 | | -1.1n-8.3=2.6 | | 0=-16x^2+160x+120 | | 2x+4-10x=5 |

Equations solver categories