0.9=(0.51+4.9t)t

Simple and best practice solution for 0.9=(0.51+4.9t)t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.9=(0.51+4.9t)t equation:



0.9=(0.51+4.9t)t
We move all terms to the left:
0.9-((0.51+4.9t)t)=0
We add all the numbers together, and all the variables
-((4.9t+0.51)t)+0.9=0
We calculate terms in parentheses: -((4.9t+0.51)t), so:
(4.9t+0.51)t
We multiply parentheses
4t^2+0.51t
Back to the equation:
-(4t^2+0.51t)
We get rid of parentheses
-4t^2-0.51t+0.9=0
a = -4; b = -0.51; c = +0.9;
Δ = b2-4ac
Δ = -0.512-4·(-4)·0.9
Δ = 14.6601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-0.51)-\sqrt{14.6601}}{2*-4}=\frac{0.51-\sqrt{14.6601}}{-8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-0.51)+\sqrt{14.6601}}{2*-4}=\frac{0.51+\sqrt{14.6601}}{-8} $

See similar equations:

| -33x+2x=-6(1+5x)+5x | | 0.9=(0.51+4.9t | | 10(0)+20y=30 | | -10x+5x+7x=-5+4x-1 | | 3=3/4(x-8) | | 1.2=(4.9t-0.5)t | | -4x+6=-10+9x | | 9/7=27/x | | 3n=183/5 | | 9x+180=10x | | 9=g+2g | | 5(2x+1)-4=3-(x-3) | | 9x+100=551 | | -18+5v=3v-v+12 | | -5-6x=19 | | -19+11j=11j-19 | | 5v^2+7v-3=v^2 | | 4(d-4)2=3(d+1) | | X+1/3=4x-4/3 | | 3(x+4)=2x+40 | | 180(18-2)=x | | -2y+10+2y-8=0 | | 8x^2-30-43=0 | | 6-(-c)=2 | | 2(4x+1)-3=10x+-4 | | 2-3(4-5x)=6(1-x)+3x | | 9999999999999999999999999999999999999999999999-c=-99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 | | 3x=x•-3 | | (11x+2)+(9x-4)=0 | | 5x-2(2x-5)=19 | | 12342343254654747568679+p=342545876576453458746352 | | 6x-(13-4x)=7 |

Equations solver categories