0.6y+1=1/4y-15

Simple and best practice solution for 0.6y+1=1/4y-15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.6y+1=1/4y-15 equation:



0.6y+1=1/4y-15
We move all terms to the left:
0.6y+1-(1/4y-15)=0
Domain of the equation: 4y-15)!=0
y∈R
We get rid of parentheses
0.6y-1/4y+15+1=0
We multiply all the terms by the denominator
(0.6y)*4y+15*4y+1*4y-1=0
We add all the numbers together, and all the variables
(+0.6y)*4y+15*4y+1*4y-1=0
We multiply parentheses
0y^2+15*4y+1*4y-1=0
Wy multiply elements
0y^2+60y+4y-1=0
We add all the numbers together, and all the variables
y^2+64y-1=0
a = 1; b = 64; c = -1;
Δ = b2-4ac
Δ = 642-4·1·(-1)
Δ = 4100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4100}=\sqrt{100*41}=\sqrt{100}*\sqrt{41}=10\sqrt{41}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-10\sqrt{41}}{2*1}=\frac{-64-10\sqrt{41}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+10\sqrt{41}}{2*1}=\frac{-64+10\sqrt{41}}{2} $

See similar equations:

| 7x-13+16x-38=90 | | 2x2−45=0 | | 15,860+20.75x=62.069+11.25x | | 0.90+0.05(18+x)=0.10(-110) | | 5(4)^x=675 | | 2(-4x+6)=3x+7 | | k/6.2+66.9=47.6 | | 0.10x+0.05(18-x)=0.10(16) | | 3(3x-4)=¼(35x+56) | | 2y=3(-4+6)+7 | | -33=x+13 | | 3x=20+5x+x=180 | | 2x-100=-59 | | 3x=20+5x=180 | | X2+30x–99=0 | | 2x+30=6x-12=90 | | 20.00+0.05x=10.00+0.07 | | 1(7x*1)=6 | | 12-j=19 | | -9(-3*8x)=-3 | | 0.65x+0.05(20-x)=0.10(118) | | (s^2)+19s-12=0 | | 5/8x+1/5=99 | | 2(-4x+6)=3x-7 | | (f^2)-27f=0 | | (d^2)-7d-18=0 | | 7x-13=32x-76 | | a/2=-11=-3 | | −6p+50=14 | | 2y-(7y+5)=6(y+3)-2y | | w^2+41w=0 | | 2x-8=2(x-1)+11 |

Equations solver categories